Vol. 05, Issue, 04, pp.4319-4323, April 2023 Available online at http://www.journalijisr.com SJIF Impact Factor 2023: 6.599

LOAD FLOW AND SHORT CIRCUIT ANALYSIS USING ETAP

¹[,] * ASHOKKUMAR N, ²KANNUSAMI G, ³PRABAKARAN S, ⁴GOVINDARAJAN R

¹Assistant Professor, Department of EEE, SCSVMV, Kanchipuram, Tamilnadu, India.
²PG Scholar, Department of EEE, SCSVMV, Kanchipuram, Tamilnadu, India.
³Associate Professor, Department of EEE, SCSVMV, Kanchipuram, Tamilnadu, India.
⁴Department of EEE, SCSVMV, Kanchipuram, Tamilnadu, India.

Received 13th February 2023; Accepted 14th March 2023; Published online 12th April 2023

ABSTRACT

This research article presents a power system study on a real time power network. The classical test system selected here is Ghazaouet 220/63/30 KV network. ETAP is used as a tool for modelling and simulating load flow as well as short circuit analysis on the above-said test system [1].

Keywords: ETAP, Load flow analysis, Short Circuit Analysis.

INTRODUCTION

Power systems in general are subjected to various studies particularly in understanding their load flow patterns and contingencies that will arise during a short circuit fault [2]. This knowledge is primarily important for power system engineers, to prepare themselves for the emergency [3]. Understanding the contingency situation is important for power system engineers, in order to find different solution sets, like regulating the OLTC'S, changing the cable length to mitigate voltage drop, increasing the transformer capacitors and adding a capacitor bank etc.[4]. Even though many tools are available to build and to simulate a system, still more analysis is required under different test systems is needed to understand the effect of faults in detail[5].

METHODOLOGY FOLLOWED THIS WORK

In this research study, the test system selected is the Ghazaouet 220/63/30KV power system network. This is the test system taken as a classical system for this research case and ETAP tool is used to build the system and to create load flow under normal conditions and a short circuit is made as a contingency and results are obtained. ETAP is the primary tool to achieve the desired results.

SYSTEM DESCRIPTION

The test system is shown in the figure below:

*Corresponding Author: ASHOKKUMAR N,

Fig.1 Single Line Diagram of Base System

The following system represented in Fig.1 [6] is a real time classical test system of an Algerian power network with three different voltage rated bus systems of 220/63/30KV. Moreover, it has clearly defined two input feeders shown in the power network as TLEMCEN and BENI SAF POSTE these are the two primarily feeder inputs of the power system shown in Fig:1.

Moreover, it has three power transformers with the rating as follows 220/63KV, transformer1 with power capacity of 120MVA, transformer:2 with a rating of 220/63KV, and a power capacity of 12MVA and the third power transformer with the power rating of 30MVA and 63/30KV as voltage ratings.

For this research article henceforth, the TLEMCEN feeder is named as U1 and BENI feeder is named as U2.

¹Assistant Professor, Department of EEE, SCSVMV, Kanchipuram, Tamilnadu, India,

METHODOLOGY AND TEST CASES

ETAP is used as analysis tool and the above system described in Fig: 1 is modeled in ETAP as follows

Fig. 2 Single Line Diagram of Load Flow Analysis

The above ETAP model clearly explains the U1 and U2 feeders which forms the power system network. Metering devices are connected suitably as shown in the Fig. 2.

LOAD FLOW ANALYSIS REPORT

Load flow analysis was conducted for the Fig.2 using ETAP under normal conditions and the results are as follows:

Fig. 3 Load Flow Analysis in ETAP

Load flow results for the power system network under normal conditions are obtained.

INTERPRETATIONS

From the load flow conducted under normal conditions it is imperative that

There are two test cases are formed one is the normal case with terminology N and the other is the abnormal condition with feeder U1 disconnected from the power system network with the terminology N-1.

N is the normal condition and N-1 is the abnormal condition. In the N-1 case the U1 feeder described in Fig. 3 is disconnected and a power system emergency condition is tabulated as below.

Critical Report of N and N-1 Cases

Table 1. C	Critical	report	for	CASE	-	Ν
------------	----------	--------	-----	------	---	---

Critical Report												
Device ID	Туре	Condition	Rating/Limit	Unit	Operating	% Operating	Phase Type					
Bus10	Bus	Under Voltage	0.400	kV	0.371	92.7	3-Phase					
Bus12	Bus	Under Voltage	0.400	kV	0.371	92.8	3-Phase					
Bus32	Bus	Under Voltage	63.000	kV	55.095	87.5	3-Phase					
Bus35	Bus	Under Voltage	30.000	kV	28.308	94.4	3-Phase					

Table2. Critical report for CASE - N-1

Critical Report												
Device ID	Туре	Condition	Rating/Limit	Unit	Operating	% Operating	Phase Type					
Bus10	Bus	Under Voltage	0.400	kV	0.355	88.9	3-Phase					
BusH	Bus	Under Voltage	63.000	kV	55.412	88.0	3-Phase					
Bus12	Bus	Under Voltage	0.400	kV	0.355	88.7	3-Phase					
Bus13	Bus	Under Voltage 11.000		kV	10.380	94.4	3-Phase					
Bus14	Bus	Under Voltage	220.000	kV	208.123	94.6	3-Phase					
Bus15	Bus	Under Voltage 220.00		kV	208.123	94.6	3-Phase					
Bus16	Bus	Under Voltage 220.000		kV	207.838	94.5	3-Phase					
Bus17	Bus	Under Voltage	220.000	kV	208.013	94.6	3-Phase					
Bus18	Bus	Under Voltage	220.000	kV	208.123	94.6	3-Phase					
Bus19	Bus	Under Voltage	63.000	kV	55.412	88.0	3-Phase					
Bus21	Bus	Under Voltage	63.000	kV	55.412	88.0	3-Phase					
Bus22	Bus	Under Voltage	63.000	kV	55.412	88.0	3-Phase					
Bus25	Bus	Under Voltage	63.000	kV	55.412	88.0	3-Phase					
Bus26	Bus	Under Voltage	63.000	kV	55.412	88.0	3-Phase					
Bus27	Bus	Under Voltage	63.000	kV	55.412	88.0	3-Phase					

Table 3. Critical report for Candidate Buses

Critical Report												
Device ID	Туре	Condition	Rating/Limit	Unit	Operating	% Operating	Phase Type					
Bus28	Bus	Under Voltage	63.000	kV	55.412	88.0	3-Phase					
Bus3	Bus	Under Voltage	220.000	kV	208.123	94.6	3-Phase					
Bus32	Bus	Under Voltage	63.000	kV	49.812	79.1	3-Phase					
Bus33	Bus	Under Voltage	63.000	kV	55.412	88.0	3-Phase					
Bus34	Bus	Under Voltage	30.000	kV	24.928	83.1	3-Phase					
Bus35	Bus	Under Voltage	30.000	kV	24.928	83.1	3-Phase					
Bus4	Bus	Under Voltage	220.000	kV	208.123	94.6	3-Phase					
Bus5	Bus	Under Voltage	220.000	kV	208,123	94.6	3-Phase					
Bus7	Bus	Under Voltage	220.000	kV	208.123	94.6	3-Phase					
Bus9	Bus	Under Voltage	11.000	kV	10.405	94.6	3-Phase					
17	Transformer	Overload	40.000	MVA	54,790	137.0	3-Phase					

Under- voltage condition is observed, that Bus no: 32has been affected much which is clear from the above two tables. Branch losses is summarized for N and N-1 cases and it is shown below

Table 4. Critical report of branch loss summary report for CASE - N

	From-To	Bus Flow	To-From Bus Flow		Losses		% Bus Voltage		Vd % Drop	
Branch ID	MW	Mvar	MW	Mvar	kW	kvar	From	То	in Vmag	
Line l	-76.076	-53.935	76.417	43.184	340.7	-10750.7	98.8	100.0	1.1	
Line2	-102.302	-82.816	103.752	79.778	1450.4	-3037.6	97.0	100.0	3.0	
Line3	93.800	79.531	-93.743	-79.682	57.0	-151.0	97.0	96.8	0.13	
Line4	-8.500	-5.268	8.502	3.285	2.0	-1982.8	96.9	97.0	0.0	
Line5	13.604	8.470	-12.687	-7.862	917.0	607.2	95.7	87.5	8.2	
TI	41.248	29.629	-40.974	-26.808	90.1	2704.2	98.8	95.7	3.14	
	0.000	0.000	-0.184	-0.118			98.8	98.7	0.13	
T2	0.184	0.118	-0.183	-0.113	0.8	4.2	98.7	92.7	5.9	
Т3	-0.183	-0.113	0.184	0.118	0.8	4.2	92.8	98.7	5.9	
14	34.828	24.305	-34.582	-22.300	62.9	1888.0	98.8	96.3	2.5	
	0.000	0.000	-0.184	-0.118			98.8	98.7	0.1	
16	27.371	18.338	-27.319	-16.931	51.5	1407.2	95.7	95.8	0.0	
T7	21.418	14.141	-21.385	-13.253	32.5	888.1	96.3	94.4	1.90	
					3005.0	-8418.0				

Table 5. Critical report of branch loss summary report for CASE - N-1

	From-To	Bus Flow	To-From Bus Flow		Losses		% Bus Voltage		% Drop
Branch ID	MW	Mvar	MW	Mvar	kW	kvar	From	То	in Vmag
Line2	-171.806	-140.926	176.216	147.692	4409.3	6766.4	94.6	100.0	5.40
Line3	89.304	75.718	-89.249	-75.862	54.3	-143.7	94.6	94.5	0.13
Line4	-8.500	-5.268	8.502	3.381	2.1	-1887.0	94.6	94.6	0.05
Line5	13.375	8.515	-12.315	-7.632	1060.0	883.5	88.0	79.1	8.89
TI	0.169	0.108	0.000	0.000	0.0	0.1	94.6	94.6	.0.00
	0.000	0.000	-0.169	-0.108			94.6	94.6	0.01
T2	0.169	0.108	-0.168	-0.104	0.8	3.9	94.6	88.9	5.72
Т3	-0.167	-0.104	0.168	0.107	0.8	3.9	88.7	94.4	5.71
T4	73.832	61.719	-73.309	-50.967	354.8	10643.9	94.6	88.0	6.65
	0.000	0.000	-0.168	-0.107			94.6	94.4	0.24
17	46.770	34.294	-46.572	-28.862	198.9	5431.2	88.0	83.1	4.86
					6081.0	21702.0			

From the above table it is very clear that the lines from 1-7 are heavily disturbed during contingency in the power system due to the failure of the feeder U1.Similarly for the transformers T1-T 7 huge drop in power is observed [7].

Table 6. Short Circuit Analysis Report

				31	orrectireun		- Itteport							
-Phase Fault Currer	nts													
					D	evice Cap:	city (kA)							
Bus			Device		Making				7933	Short	-Circuit C	urrent (kA)	1003	
ID	kV		ID	Туре	Peak	lb sym	Ib asym	Ide	I"k	ip	Ib sym	Ib asym	Ide	Ik
kus.s	220.000	Buss		SwitchGear					5.901	13.252				5.12
kussi	220,000	Dust		Bus					5.901	13.232				6.12
kus5	220.000	Dus5		Bus					3.901	13.454				3.1.2-
buso	220.000	Buso Buso		Bus					\$ 001	13 252				10.000
sus /	220.000	Dus/		Bus					3.901	13.232				3.12
kus9	0.400	Bus9		Bus					19.076	42 200				10.06
harl	63,000	Bust		Bus					0.149	72.277				6.44
hus 12	0.400	Dus12		Bus					10.081	43 200				10.06
Rus 13	11,000	Bus13		Bus					35 531	90.398				33.56
bie 1.4	220.000	Buel4		Bus					5 901	13 757				5.12
lus 15	220.000	Bus15		Bus					5 901	13 252				5.12
bus 16	220.000	Busto		Bus					5.755	12 886				5.01
lus 17	220.000	Bus17		Bus					5,190	11.504				4.54
lus 18	220.000	Bus18		Bus					5.901	13.252				5.12
Bus 19	63.000	Bus19		Bus					9.148	22.888				6.44
Bus21	63.000	Bus21		Bus					9.148	22.888				6.44
Bus22	63.000	Bus22		Bus					9.148	22.888				6.44
Bus25	63.000	Bus25		Bus					9,148	22.888				6.44
Sus26	63.000	Bus26		Bus					9.148	22.888				6.44
Bus27	63.000	Bus27		Bus					9.148	22.888				6.44
Bus28	63.000	Bus28		Bus					9.148	22.888				6.44
Jus32	63.000	Bus32		Bus					1.807	3.160				1.53
lus33	63.000	Bus33		Bus					9.148	22.888				6.44
Bus34	30.000	Bus34		Bus					14.208	35.904				7.47
Jus35	30.000	Bus35		Bus					14.208	35.904				7.47

SHORT CIRCUIT SUMMARY REPORT

The following table clearly explains the shift over in bus voltages and the corresponding short-circuit current in KA, due to the short circuit in the feeder U1. In Bus 9, it can be observed the symmetrical component of the **short-circuit currents** are 36.944KA, 95.756KA and 35.539 KA. Similarly in Bus 13 also a severe emergency condition is felt by the rise of short circuit current to the similar levels of Bus-9. Typical Interpretations can be observed from the above fault analysis [8-13], once on understanding the severity due to the fault current effective remedial measures by having neural controller damping of fault currents can be planned.

Understanding the severity of the fault current is of at most importance to understand the nature of the problem data occurred due to the short-circuit fault in a particular feeder, systematic understanding is a mandatory requirement to plan for the effective solutions[14].

CONCLUSION

This research article has extensively elaborated sudden short circuit in a feeder and the shift over in load flow patterns and the shift over in short circuit currents due to the fault. This is a contingency analysis research over a real time power system. Further, this research can be extended by exploring suitable solutions to damp the short circuit current due to the fault and to balance the load flow by effective strategies in monitoring and control of power [15-18]. This research will definitely provide a lead for researches working in power system contingencies and short circuit problems.

REFERENCES

- Short Circuit Analysis 0f 33/11/0.4Kv distribution systems using E-Taps, Zaw Aung et..al, International Journal of Latest Technology in Engineering, Management and applied Science (IJLTEMAS), Volume VIII,issue: V, May 2019
- Short circuit analysis of 33/11/0.4Kv distribution systems using E-Tap, Dr.Aung Latt (IJLETMAS) Volume VIII, issue V, May 2019
- [3] Short Circuit Analysis of IEEE 14 Bus system using ETAP AkhilaChilakala – et..al. International Journal of Applied Engineering Research
- [4] Evangelos E. Pompodakis et..al "OLTC transformer model connecting 3-wire MV with 4-wire multigrounded LV networks" Electric Power Systems Research 192 (2021) 107003
- [5] BakhtyarHoseinzadeh et..al "A novel control technique for onload tap changer to enlarge the reactive power capability of wind power plants" The Institution of Engineering and Technology, May 2022

- [6] Power Flow and Short Circuit Analysis of 220Kv Substation using E-Tap, Amine Zeggaiet...al, IEEE 2019
- [7] Load Flow Analysis of Power Systems, Ashirwad Dubey, International Journal of Scientific & Engineering Research, Volume 7, Issue 5,May-2016
- [8] Ashok Kumar et...al "Intelligent Solutions for Transmission Line management for 3-phase to Ground Fault Problems", I.R.E.A.C.O. Italy, Volume-7, no:5, pp.452-460.
- Ashok Kumar et..al "Neural controller for damping transmission line oscillations", India Journal of Science and Technology, India. Volume-9(43), November-2016
- [10] S.Prabakaran, Ajay –D-Vimal raj "Solution for Multi-area Unit Commitment Problem Using PSO-Based Modified Firefly Algorithm "Advances in Systems, Control and Automation, Lecture Notes in Electrical Engineering - Springer Nature Singapore Pt Ltd- Vol. 10, No. 4 2018.
- [11] S.PrabakaranV.SenthilKumarG.Baskar "Economic Dispatch Using Hybrid Particle Swarm Optimization with Prohibited Operating Zones and Ramp Rate Limit Constraints" Journal of Electrical Engineering and Technology Vol 10, No. 4 -2015.
- [12] P.Murugesan and S.Prabakaran "Time-Frequency Analysis of Power Quality Disturbances via the Transform based Techniques" International Journal of Engineering & Technology Vol 7 (4.19), 2018.
- [13] P.Murugesan and S.Prabakaran "A Robust Tool for Monitoring and Synchronizing Smart Grid through Adaptive Comb Filter" Indonesian Journal of Electrical Engineering and Informatics (IJEEI) Vol 7 No 4.,2019.
- [14] Dr.S.Sankarakumaret..al "load flow analysis, short circuit analysis, and relay protection using etap" International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST), Vol.7, Issue.4, April 2021.
- [15] R. Govindarajan, S. Meikandasivam, D. Vijayakumar, "Energy monitoring system using Zigbee and Arduino", International Journal of Engineering & Technology, Vol. 7, No. 4, pp. 608-611, 2018.
- [16] R. Govindarajan, S. Meikandasivam, D. Vijayakumar, "Low cost Arduino based smart energy monitoring system using internet of things", Journal of Engineering and Applied Sciences, Vol. 14, No. 1, pp. 170-177, 2019.
- [17] R. Govindarajan, S. Meikandasivam, D. Vijayakumar, "Cloud computing based smart energy monitoring system", International Journal of Scientific and Technology Research, Vol. 8, No. 10, pp. 886-890, 2019.
- [18] R. Govindarajan, S. Meikandasivam, D. Vijayakumar, "Performance Analysis of Smart Energy Monitoring Systems in Real-time, Engineering, Technology & Applied Science Research, Vol. 10, No. 3, pp. 5808-5813, 2020.
