
th th



by the following integral

A[h(y)] = H(q) =
1

q

ˆ ∞

0

e−qyh(y)dy, τ1 ≤ q ≤ τ2.

And the inverse Aboodh transform is

A−1[H(q)] = h(y) =
1

2πi

ˆ ω+i∞

ω−i∞
qeqyH(q)dq, ω ≥ 0.

For further details and properties of the Aboodh transform and its derivatives we
refer to [8, 9].
The Sumudu transform of the function h(t) is defined over the set of functions

N =
{
h(t) : ∃M, ρ1, ρ2 > 0, |h(t)| < Me

|t|
ρj , t ∈ (−1)j × [0,∞), j = 1, 2

}
,

by

S[h(t)] = H(r) =
1

r

ˆ ∞

0

e−
t
rh(t)dt.

Moreover, the inverse of Sumudu transform is

S−1[H(r)] = h(t) =
1

2πi

ˆ ω+i∞

ω−i∞

1

r
e

t
rH(r)dr, ω ≥ 0.

For further details and properties of the Sumudu transform and its derivatives
we refer to [3, 4].
The double Aboodh-Sumudu transform of the continuous function h(y, t), y, t >
0 is denoted by the operator AySt[h(y, t)] = H(q, r) and defined by

AySt[h(y, t)] = H(q, r) =
1

qr

ˆ ∞

0

ˆ ∞

0

e−(qy+ t
r
)h(y, t)dydt

=
1

qr
lim

α→∞,β→∞

ˆ α

0

ˆ β

0

e−(qy+ t
r
)h(y, t)dydt.

It converges if the limit of the integral exists, and diverges if not.
And the inverse double Aboodh-Sumudu transform is defined by

h(y, t) = A−1
y S−1

t [H(q, r)] =
1

(2πi)2

ˆ γ1+i∞

γ1−i∞
qeqydq

{ ˆ γ2+i∞

γ2−i∞

1

r
e

t
rH(q, r)dr

}
,

where γ1 and γ2 are real constants.
Double Aboodh-Sumudu transform for second partial derivatives property

AySt

[∂2h(y, t)

∂y2

]
= q2H(q, r)− S[h(0, t)]− 1

q
S[hy(0, t)],

AySt

[∂2h(y, t)

∂t2

]
=

1

r2
H(q, r)− 1

r2
A[h(y, 0)]− 1

r
A[ht(y, 0)],

AySt

[∂2h(y, t)

∂y∂t

]
=

q

r
H(q, r)− q

r
A[h(y, 0)]− 1

q
S[ht(0, t)],

where A[.] and S[.] denote to single Aboodh transform and single Sumudu trans-
form respectively.



In [2], some fundamental properties of the double Aboodh-Sumudu transform and
its derivatives were established. Moreover, double Aboodh-Sumudu transform for
some functions are showed.
We consider the general inhomogeneous nonlinear partial differential equation
with initial conditions given below:

Lu(x, y, t) +Ru(x, y, t) +Nu(x, y, t) = f(x, y, t) (1.1)

u(x, y, 0) = g1(x, y), ut(x, y, 0) = g2(x, y), (1.2)

where L = ∂2

∂t2
is the second order derivative which is assumed to be easily invert-

ible, R is the remaining linear differential operator, Nu represents the nonlinear
terms and f(x, y, t), g1(x, y) and g2(x, y) are known functions.
The methodology consists of applying double Aboodh-Sumudu transform first on
both sides of Eq. (1.1)

AySt[Lu(x, y, t)] + AySt[Ru(x, y, t)] + AySt[Nu(x, y, t)] = AySt[f(x, y, t)]. (1.3)

Using the differentiation property of double Aboodh-Sumudu transform, we have

1

r2
u(x, q, r) − 1

r2
A[u(x, y, 0)]− 1

r
A[ut(x, y, 0)] + AySt[Ru(x, y, t)]

+ AySt[Nu(x, y, t)] = AySt[f(x, y, t)], (1.4)

Using given initial conditions and arrangement, Eq. (1.4) becomes

u(x, q, r) = A[g1(x, y)] + rA[g2(x, y)] + r2AySt[f(x, y, t)]

− r2AySt[Ru(x, y, t)]− r2AySt[Nu(x, y, t)]. (1.5)

Application of inverse double Aboodh-Sumudu transform to (1.5) leads to

u(x, y, t) = A−1
y S−1

t

[
A[g1(x, y)] + rA[g2(x, y)] + r2AySt

[
f(x, y, t)

]]
− A−1

y S−1
t

[
r2AySt

[
Ru(x, y, t)

]
+r2AySt

[
Nu(x, y, t)

]]
. (1.6)

The second step in double Aboodh-Sumudu decomposition method is that we
represent solution as an infinite series:

u(x, y, t) =
∞∑
i=0

ui(x, y, t), (1.7)

and the nonlinear term can be decomposed as

Nu(x, y, t) =
∞∑
i=0

Ai, (1.8)

where Ai are Adomian polynomials [12] of u0, u1, u2, ..., un and it can be calculated
by formula

Ai =
1

i!

di

dλi

[
N

∞∑
i=0

λiui

]
λ=0

. (1.9)



Substituting Eq. (1.7) and Eq. (1.8) in Eq. (1.6), we get

∞∑
i=0

ui(x, y, t) = A−1
y S−1

t

[
A[g1(x, y)] + rA[g2(x, y)] + r2AySt[f(x, y, t)]

]

− A−1
y S−1

t

[
r2AySt

[
R

∞∑
i=0

ui(x, y, t)
]
+r2AySt

[ ∞∑
i=0

Ai

]]
.(1.10)

On comparing both sides of the Eq. (1.10) and by using standard Adomian
decomposition method (ADM), we then define the recurrence relations as

u0(x, y, t) = A−1
y S−1

t

[
A[g1(x, y)] + rA[g2(x, y)] + r2AySt[f(x, y, t)]

]
, (1.11)

u1(x, y, t) = −A−1
y S−1

t

[
r2AySt[Ru0(x, y, t)] + r2AySt[A0]

]
, (1.12)

u2(x, y, t) = −A−1
y S−1

t

[
r2AySt[Ru1(x, y, t)] + r2AySt[A1]

]
. (1.13)

In more general, the recursive relation is given by

ui+1(x, y, t) = −A−1
y S−1

t

[
r2AySt[Rui(x, y, t)] + r2AySt[Ai]

]
, i ≥ 0. (1.14)

The recurrence relation generates the solution of (1.1) in series form given by

u(x, y, t) = u0(x, y, t) + u1(x, y, t) + u2(x, y, t) + ...+ ui(x, y, t) + ... (1.15)

2. Applications

In order to illustrate the applicability and efficiency of the double Aboodh-
Sumudu decomposition method, we apply this method to solve some examples.

Example 2.1. Consider the following nonlinear partial differential equation

utt(x, y, t) + u2(x, y, t)− u2
x(x, y, t) = 0, t > 0, (2.1)

subject to the initial conditions

u(x, y, 0) = 0, ut(x, y, 0) = ex+y. (2.2)

Applying double Aboodh-Sumudu transform algorithm, we get

1

r2
u(x, q, r)− 1

r2
A[u(x, y, 0)]− 1

r
A[ut(x, y, 0)] = AySt[u

2
x(x, y, t)− u2(x, y, t)].

Rearranging the terms and using given initial conditions, we have

u(x, q, r) =
r

q(q − 1)
ex + r2AySt

[
u2
x(x, y, t)− u2(x, y, t)

]
. (2.3)

By applying the inverse double Aboodh-Sumudu transform for Eq. (2.3), we get

u(x, y, t) = tex+y + A−1
y S−1

t

[
r2AySt

[
u2
x(x, y, t)− u2(x, y, t)

]]
. (2.4)



The double Aboodh-Sumudu decomposition method assumes a series solution of
the function u(x, y, t) is given by

u(x, y, t) =
∞∑
i=0

ui(x, y, t). (2.5)

Using Eq. (2.5) into Eq. (2.4) we get

∞∑
i=0

ui(x, y, t) = tex+y + A−1
y S−1

t

[
r2AySt

[ ∞∑
i=0

Ai(u)−
∞∑
i=0

Bi(u)

]]
, (2.6)

where Ai and Bi are Adomian polynomials that represents nonlinear terms.
So Adomian polynomials are given as follows:

∞∑
i=0

Ai(u) = u2
x(x, y, t),

∞∑
i=0

Bi(u) = u2(x, y, t). (2.7)

The few components of the Adomian polynomials are given as follow:

A0(u) = u2
0x, A1(u) = 2u0xu1x, ..., Ai(u) =

i∑
r=0

urxu(i−r)x, (2.8)

B0(u) = u2
0, B1(u) = 2u0u1, ..., Bi(u) =

i∑
r=0

urui−r. (2.9)

From Eqs. (2.6) and (2.7) we obtain

u0 = tex+y, (2.10)
∞∑
i=0

ui+1(x, y, t) = A−1
y S−1

t

[
r2AySt

[ ∞∑
i=0

Ai(u)−
∞∑
i=0

Bi(u)

]]
, i ≥ 0.(2.11)

Then the first few components of ui(x, y, t) follows immediately upon setting

u1(x, y, t) = A−1
y S−1

t

[
r2AySt[A0(u)− B0(u)]

]
= A−1

y S−1
t

[
r2AySt[u

2
0x − u2

0]
]

= A−1
y S−1

t

[
r2AySt[t

2e2x+2y − t2e2x+2y]
]

= A−1
y S−1

t [r2AySt[0]] = 0. (2.12)

Similarly, u2(x, y, t) = u3(x, y, t) = u4(x, y, t) = 0 and so on. Thus, we obtain the
solution of (2.1) by double Aboodh-Sumudu decomposition method as

u(x, y, t) =
∞∑
i=0

ui(x, y, t) = tex+y. (2.13)

Which is the required solution.

Example 2.2. Consider the system of nonlinear partial differential equations

ut + vuy + u = 1,
vt − uvy − v = 1,

(2.14)



with initial conditions

u(y, 0) = ey,
v(y, 0) = e−y.

(2.15)

Applying the double Aboodh-Sumudu transform to both sides of equations
(2.14), we have

1
r
U(q, r)− 1

r
A[u(y, 0)] = AySt[1]− AySt[vuy + u],

1
r
V (q, r)− 1

r
A[v(y, 0)] = AySt[1] + AySt[uvy + v].

(2.16)

Application of single Aboodh transform to (2.15) and substitute in (2.16), we
have

U(q, r) = 1
q(q−1)

+ r
q2

− rAySt[vuy + u],

V (q, r) = 1
q(q+1)

+ r
q2

+ rAySt[uvy + v].
(2.17)

By taking the inverse double Aboodh-Sumudu transform in (2.17), our required
recursive relation is given by

u(y, t) = ey + t− A−1
y S−1

t

[
rAySt

[
vuy + u

]]
,

v(y, t) = e−y + t+ A−1
y S−1

t

[
rAySt

[
uvy + v

]]
.

(2.18)

The recursive relations are

u0(y, t) = ey,

ui+1(y, t) = t− A−1
y S−1

t

[
rAySt

[ ∞∑
i=0

Ci(v, u) +
∞∑
i=0

ui

]]
, i ≥ 0

(2.19)

v0(y, t) = e−y,

vi+1(y, t) = t+ A−1
y S−1

t

[
rAySt

[ ∞∑
i=0

Di(u, v) +
∞∑
i=0

vi

]]
, i ≥ 0,

where u(y, t) and v(y, t) are linear terms represented by the decomposition series
and Ci(v, u) and Di(u, v) are Adomian polynomials representing the nonlinear



terms [12]. The few components of Adomian polynomials are given as follow

C0(v, u) = v0u0y,

C1(v, u) = v0u1y + v1u0y,

C2(v, u) = v0u2y + v1u1y + v2u0y,

C3(v, u) = v0u3y + v1u2y + v2u1y + v3u0y,

...

Ci(v, u) =
i∑

n=0

vnu(i−n)y,

D0(u, v) = u0v0y,

D1(u, v) = u0v1y + u1v0y,

D2(u, v) = u0v2y + u1v1y + u2v0y,

D3(u, v) = u0v3y + u1v2y + u2v1y + u3v0y,

...

Di(u, v) =
i∑

n=0

unv(i−n)y.

Using the derived Adomian polynomials into (2.19), we obtain

u0(y, t) = ey,

v0(y, t) = e−y,

u1(y, t) = t− A−1
y S−1

t

[
rAySt[C0(v, u) + u0]

]
= t− A−1

y S−1
t

[
rAySt[v0u0y + u0]

]
= t− A−1

y S−1
t

[
rAySt[1 + ey]

]
= t− A−1

y S−1
t

[ r
q2

+
r

q(q − 1)

]
= −tey,

v1(y, t) = t+ A−1
y S−1

t

[
rAySt[D0(u, v) + v0]

]
= t+ A−1

y S−1
t

[
rAySt[u0v0y + v0]

]
= t+ A−1

y S−1
t

[
rAySt[−1 + e−y]

]
= t+ A−1

y S−1
t

[− r

q2
+

r

q(q + 1)

]
= te−y,

u2(y, t) = −A−1
y S−1

t

[
rAySt[C1(v, u) + u1]

]
= −A−1

y S−1
t

[
rAySt[v0u1y + v1u0y + u1]

]
= −A−1

y S−1
t

[
rAySt[−tey]

]
= −A−1

y S−1
t

[− r2

q(q − 1)

]
=

t2

2!
ey,

v2(y, t) = A−1
y S−1

t

[
rAySt[D1(u, v) + v0]

]
= A−1

y S−1
t

[
rAySt[u0v1y + u1v0y + v1]

]
= A−1

y S−1
t

[
rAySt[te

−y]
]
= A−1

y S−1
t

[ r2

q(q + 1)

]
=

t2

2!
e−y.



In the same way we can get

u3(y, t) = − t3

3!
ey,

v3(y, t) =
t3

3!
e−y,

and so on for other components. Therefore, the series solutions obtained by
double Aboodh-Sumudu decomposition method are given by

u(y, t) =
∞∑
i=0

ui(y, t) = ey
(
1− t+

t2

2!
− t3

3!
+ ...

)
= ey−t,

v(y, t) =
∞∑
i=0

vi(y, t) = e−y
(
1 + t+

t2

2!
+

t3

3!
+ ...

)
= e−y+t.

Which is same as solution obtained by Sumudu decomposition method [5].

Example 2.3. Consider the system of nonlinear partial differential equations

uy(x, y, t) − vxwt = −1,

vy(x, y, t) − wxut = 1, (2.20)

wy(x, y, t) − uxvt = −5,

with initial conditions

u(x, 0, t) = x+ 3t,

v(x, 0, t) = x+ 3t, (2.21)

w(x, 0, t) = −x+ 3t.

Taking the double Aboodh-Sumudu transform to both sides of equations (2.20),
we have

qu(x, q, r)− 1

q
S[u(x, 0, t)] = − 1

q2
+ AySt[vxwt],

qv(x, q, r)− 1

q
S[v(x, 0, t)] =

1

q2
+ AySt[wxut], (2.22)

qw(x, q, r)− 1

q
S[w(x, 0, t)] = − 5

q2
+ AySt[uxvt].

Application of single Sumudu transform to (2.21) then substitute in (2.22) and
rearranging the terms, we have

u(x, q, r) =
1

q2
(x+ 3r)− 1

q3
+

1

q
AySt[vxwt],

v(x, q, r) =
1

q2
(x+ 3r) +

1

q3
+

1

q
AySt[wxut], (2.23)

w(x, q, r) =
1

q2
(−x+ 3r)− 5

q3
+

1

q
AySt[uxvt].



By taking the inverse double Aboodh-Sumudu transform in (2.23), we get

u(x, y, t) = x+ 3t− y + A−1
y S−1

t

[1
q
AySt

[
vxwt

]]
,

v(x, y, t) = x+ 3t+ y + A−1
y S−1

t

[1
q
AySt

[
wxut

]]
, (2.24)

w(x, y, t) = −x+ 3t− 5y + A−1
y S−1

t

[1
q
AySt

[
uxvt

]]
.

The recursive relations are

u0(x, y, t) = x− y + 3t,

ui+1(x, y, t) = A−1
y S−1

t

[
1

q
AySt

[ ∞∑
i=0

Ei(v, w)

]]
, i ≥ 0.

v0(x, y, t) = x+ y + 3t,

vi+1(x, y, t) = A−1
y S−1

t

[
1

q
AySt

[ ∞∑
i=0

Fi(w, u)

]]
, i ≥ 0, (2.25)

w0(x, y, t) = −x− 5y + 3t,

wi+1(x, y, t) = A−1
y S−1

t

[
1

q
AySt

[ ∞∑
i=0

Gi(u, v)

]]
, i ≥ 0,

where Ei(v, w), Fi(w, u), and Gi(u, v) are Adomian polynomials representing the
nonlinear terms [12] in above equations. The few components of Adomian poly-
nomials are given as follow

E0(v, w) = v0xw0t,

E1(v, w) = v1xw0t + v0xw1t,
...

Ei(v, w) =
i∑

n=0

vnxw(i−n)t

F0(w, u) = w0xu0t,

F1(w, u) = w1xu0t + w0xu1t,
...

Fi(w, u) =
i∑

n=0

wnxu(i−n)t

G0(u, v) = u0xv0t,

G1(u, v) = u1xv0t + u0xv1t,
...

Gi(u, v) =
i∑

n=0

unxv(i−n)t



In view of this recursive relations we obtained other components of the solution
as follows

u1(x, y, t) = A−1
y S−1

t

[1
q
AySt[E0(v, w)]

]
= A−1

y S−1
t

[1
q
AySt[v0xw0t]

]
= A−1

y S−1
t

[ 3

q3

]
= 3y,

v1(x, y, t) = A−1
y S−1

t

[1
q
AySt[F0(w, u)]

]
= A−1

y S−1
t

[1
q
AySt[w0xu0t]

]
= A−1

y S−1
t

[−3

q3

]
= −3y,

w1(x, y, t) = A−1
y S−1

t

[1
q
AySt[G0(u, v)]

]
= A−1

y S−1
t

[1
q
AySt[u0xv0t]

]
= A−1

y S−1
t

[ 3

q3

]
= 3y,

u2(x, y, t) = A−1
y S−1

t

[1
q
AySt[E1(v, w)]

]
= A−1

y S−1
t

[1
q
AySt[v1xw0t + v0xw1t]

]
= 0,

v2(x, y, t) = A−1
y S−1

t

[1
q
AySt[F1(w, u)]

]
= A−1

y S−1
t

[1
q
AySt[w1xu0t + w0xu1t]

]
= 0,

w2(x, y, t) = A−1
y S−1

t

[1
q
AySt[G1(u, v)]

]
= A−1

y S−1
t

[1
q
AySt[u1xv0t + u0xv1t]

]
= 0.

Similarly, u3(x, y, t) = v3(x, y, t) = w3(x, y, t) = 0 and so on for rest terms.
Therefore, the solution of system (2.20) are given below

u(x, y, t) =
∞∑
i=0

ui(x, y, t) = x+ 2y + 3t,

v(x, y, t) =
∞∑
i=0

vi(x, y, t) = x− 2y + 3t,

w(x, y, t) =
∞∑
i=0

wi(x, y, t) = −x− 2y + 3t.

3. Conclusion

In the present paper, double Aboodh-Sumudu transform method combined
with Adomian decomposition method which so-called the double Aboodh-Sumudu
decomposition method (DASDM) is applied to solve nonlinear coupled partial dif-
ferential equations with initial conditions. Three examples have been presented.
The results of these examples tell us that both methods can be used alternatively
for the solution of high-order initial value problems.
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