
International Journal of Innovation Scientific Research and Review

Vol. 05, Issue, 11, pp.5493-5499, November 2023

Available online at http://www.journalijisr.com

SJIF Impact Factor 2023: 6.599

Research Article

ISSN: 2582-6131

COMPARISON MSAA ALGORTIHM AND FXAA ALGORITHM IN COMPUTER GRAPHICS

 * Charisma Tubagus Setyobudhi

Department of Computer Science, Faculty of Technology and Engineering, Universitas Dipoengeoro, JL. Prof. H. Soedarto, SH Tembalang Semarang Indonesia.

Received 20th September 2023; Accepted 21th October 2023; Published online 30th November 2023

ABSTRACT

Anti Aliasing is a technique in which a pixelated line is changed to be smoother in computer graphics. Anti Aliasing is needed in computer graphics so that
images look more realistic. There are several types of anti-aliasing techniques, namely, MSAA, FXAA, TAA, and SSAA. In this paper, the author compares the
performance of two algorithms, namely MSAA and FXAA, using Open GL as their implementation. The comparison method used to compare the two algorithms
is the visual quality and performance produced by the two algorithms.

Keywords: Anti aliasing, MSAA, FXAA.

BACKGROUND

Anti Aliasing Anti-aliasing has been a subject of research in the
computer field for more than 40 years [1]. Anti-aliasing is used in
computer graphics to prevent or reduce the effects of aliasing. The
aliasing effect occurs when an uneven edge (ladder-shaped) appears
in the image. This is because the rasterisation process is distorted by
sampling at a very low frequency. Under sampling is also called
under sampling. Under sampling occurs because the sampling is
performed at a frequency lower than the Nyquist frequency. The
minimum sampling frequency (fs) so that under sampling does not
occur can be formulated as follows:

Fs = 2 * Fmax

In real terms, we can see aliasing and anti-aliasing effects in the
image below.

Several techniques or algorithms can be used for anti-aliasing,
including MSAA, FXAA, SMAA, TAA, MLAA[2], RSAA[3], and
NSAA[4]. Anti-aliasing implementation is usually found in graphics
hardware or GPU [5].

MSAA (Multi Sampling Anti Aliasing)

In MSA, super sampling is performed. Super sampling is performed
by rendering the scene at a higher resolution and down sampling it to
an output with a lower resolution. In general, all Graphical Processing
Units (GPUs) have similar mechanisms. MSAA can be performed with

*Corresponding Author: Charisma Tubagus Setyobudhi,

Department of Computer Science, Faculty of Technology and Engineering,
Universitas Dipoengeoro, SH Tembalang Semarang Indonesia.

several samples, namely 2x, 4x, 8x, 16x. The MSAA technique is
similar to or similar to super sampling anti-aliasing (SSAA), where
SSAA also performs a similar process. However, there is a difference
between MSAA and SSAA, namely in the shade section where MSAA
executes the fragment shader only once per pixel. Meanwhile, the
SSAA executes the fragment shader several times for each pixel.
This causes the SSAA to behavior than the MSAA. Another difference
is that the MSAA super samples only the edges, whereas the SSAA
super samples the entire scene.

FXAA (Fast Approximate Anti Aliasing)

The FXAA is an AA algorithm created by NVIDIA. This algorithm is a
post-processing technique in which the rendered frame is detected
and which part of the screen needs to be smoothed. FXAA was
performed to smooth the jaggy edges using a colour approach. The
FXAA technique is faster than MSAA; however, the resulting image is

slightly blurry. The advantage of the FXAA technique is that the
processing speed is relatively fast, button the other hand, the
resulting image is slightly reduced in quality.

SMAA (Sub pixel Morphological Anti Aliasing)

SMAA is a technique that was developed base don MLAA.MLAA is a
post-processing technique. SMAA uses a GPU instead of a CPU,
unlike MLAA. The SMAA technique detects edges and uses filtering
to smoothen them. The SMAA's performance is balanced enough for
use, which is not too burdensome for the GPU, and the results
produced are quite smooth.

TAA (Temporal Anti Aliasing)

The TAA uses time to help smooth the jagged edges. TAA looks at
the previously rendered image in the buffer to determine which edges
are smooth, rather than analysing the pixel so fan image.

RESEARCH METHODS

In this article, the author compares two methods or techniques for
anti-aliasing, namely MSAA and FXAA. Open GL will be used as a
tool or library for the implementation of these two techniques.

To implement anti-aliasing, the author created the components in the
game engine that will be used. These components are as follows:

1. Window

The Window component creates a window object in which the scene
will be drawn. This component has several important functions,
namely Update() and Swap Buffers()

Function Update() inside the window

voidWindow::Update()

 {

 for (inti = 0; i<Input::NUM_MOUSEBUTTONS; i++)

 {

 m_input.SetMouseDown(i, false);

 m_input.SetMouseUp(i, false);

 }

 for(inti = 0; i<Input::NUM_KEYS; i++)

 {

 m_input.SetKeyDown(i, false);

 m_input.SetKeyUp(i, false);

 }

 SDL_Evente;

 while(SDL_PollEvent(&e))

 {

 if(e.type == SDL_QUIT)

 {

 m_isCloseRequested = true;

 }

 if(e.type == SDL_MOUSEMOTION)

 {

 m_input.SetMouseX(e.motion.x);

 m_input.SetMouseY(e.motion.y);

 }

 if(e.type == SDL_KEYDOWN)

 {

 int value = e.key.keysym.scancode;

 m_input.SetKey(value, true);

 m_input.SetKeyDown(value, true);
 }

 if(e.type == SDL_KEYUP)

 {

 int value = e.key.keysym.scancode;

 m_input.SetKey(value, false);

 m_input.SetKeyUp(value, true);

 }

International Journal of Innovation Scientific Research and Review, Vol. 05, Issue 11, pp.5493-5499 November 2023 5494

 if(e.type == SDL_MOUSEBUTTONDOWN)

 {

 int value = e.button.button;

 m_input.SetMouse(value, true);

 m_input.SetMouseDown(value, true);

 }

 if(e.type == SDL_MOUSEBUTTONUP)

 {

 int value = e.button.button;

 m_input.SetMouse(value, false);

 m_input.SetMouseUp(value, true);

 }

 }

 }

 voidWindow::Update()

 {

 for(inti = 0; i<Input::NUM_MOUSEBUTTONS; i++)

 {

 m_input.SetMouseDown(i, false);

 m_input.SetMouseUp(i, false);

 }

 for(inti = 0; i<Input::NUM_KEYS; i++)

 {

 m_input.SetKeyDown(i, false);

 m_input.SetKeyUp(i, false);

 }

 SDL_Evente;

 while(SDL_PollEvent(&e))

 {

 if(e.type == SDL_QUIT)

 {

 m_isCloseRequested = true;

 }

 if(e.type == SDL_MOUSEMOTION)

 {

 m_input.SetMouseX(e.motion.x);

 m_input.SetMouseY(e.motion.y);

 }

 if(e.type == SDL_KEYDOWN)

 {

 int value = e.key.keysym.scancode;

 m_input.SetKey(value, true);

 m_input.SetKeyDown(value, true);

 }

 if(e.type == SDL_KEYUP)

 {

 int value = e.key.keysym.scancode;

 m_input.SetKey(value, false);

 m_input.SetKeyUp(value, true);

 }

International Journal of Innovation Scientific Research and Review, Vol. 05, Issue 11, pp.5493-5499 November 2023 5495

if(e.type == SDL_MOUSEBUTTONDOWN)

 {

 int value = e.button.button;

 m_input.SetMouse(value, true);

 m_input.SetMouseDown(value, true);

 }

 if(e.type == SDL_MOUSEBUTTONUP)

 {

 int value = e.button.button;

 m_input.SetMouse(value, false);

 m_input.SetMouseUp(value, true);

 }

 }

}

Fungsi SwapBuffers() di dalam Window

voidWindow::SwapBuffers()

{

 SDL_GL_SwapWindow(m_window);

}

2. Core Engine

 The main task of the Core Engine component was to first connect the window to b ecreated and the game to be rendered. There are
several functions of Core Engine:

FunctionCreateWindow()

voidCoreEngine::CreateWindow(const std::string&title)

{

 m_window = newWindow(m_width, m_height, title);

 m_renderingEngine = newRenderingEngine(*m_window);

}

Function Start()

voidCoreEngine::Start()

{

 if(m_isRunning)

 {

 return;

 }

 Run();

}

Function Stop()

voidCoreEngine::Stop()

{

 if(!m_isRunning)

 {

 return;

 }

 m_isRunning = false;

}

International Journal of Innovation Scientific Research and Review, Vol. 05, Issue 11, pp.5493-5499 November 2023 5496

3. Rendering Engine

 Rendering Engine is the component in which the main function for rendering is executed. Rendering Engine combines several

important elements, namely, Game Object, Lighting, and Camera. There are severa limportant functions of the Rendering Engine:

voidRenderingEngine::Render(constGameObject&object, constCamera&mainCamera)
{
 GetTexture("displayTexture").BindAsRenderTarget();
 //m_window->BindAsRenderTarget();
 //m_tempTarget->BindAsRenderTarget();

 glClearColor(0.0f,0.0f,0.0f,0.0f);
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 object.RenderAll(m_defaultShader, *this, mainCamera);

 for(unsignedinti = 0; i<m_lights.size(); i++)
 {
 m_activeLight = m_lights[i];
 ShadowInfoshadowInfo = m_activeLight->GetShadowInfo();

 intshadowMapIndex = 0;
 if(shadowInfo.GetShadowMapSizeAsPowerOf2() != 0)
 shadowMapIndex = shadowInfo.GetShadowMapSizeAsPowerOf2() - 1;

 assert(shadowMapIndex>= 0 &&shadowMapIndex< NUM_SHADOW_MAPS);

 SetTexture("shadowMap", m_shadowMaps[shadowMapIndex]);
 m_shadowMaps[shadowMapIndex].BindAsRenderTarget();
 glClearColor(1.0f,1.0f,0.0f,0.0f);
 glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT);

 if(shadowInfo.GetShadowMapSizeAsPowerOf2() != 0)
 {
 m_altCamera.SetProjection(shadowInfo.GetProjection());
 ShadowCameraTransformshadowCameraTransform = m_activeLight->
 CalcShadowCameraTransform(mainCamera.GetTransform().GetTransformedPos(),
 mainCamera.GetTransform().GetTransformedRot());
 m_altCamera.GetTransform()->SetPos(shadowCameraTransform.GetPos());
 m_altCamera.GetTransform()->SetRot(shadowCameraTransform.GetRot());

 m_lightMatrix= BIAS_MATRIX *m_altCamera.GetViewProjection();

 SetFloat("shadowVarianceMin", shadowInfo.GetMinVariance());
 SetFloat("shadowLightBleedingReduction", shadowInfo.GetLightBleedReductionAmount());
 boolflipFaces = shadowInfo.GetFlipFaces();

 //const Camera* temp = m_mainCamera;
 //m_mainCamera = m_altCamera;

 if(flipFaces)
 {
 glCullFace(GL_FRONT);
 }

 object.RenderAll(m_shadowMapShader, *this, m_altCamera);

 if(flipFaces)
 {
 glCullFace(GL_BACK);
 }

 //m_mainCamera = temp;

 floatshadowSoftness = shadowInfo.GetShadowSoftness();

 if(shadowSoftness != 0)
 {
 BlurShadowMap(shadowMapIndex, shadowSoftness);
 }
 }

International Journal of Innovation Scientific Research and Review, Vol. 05, Issue 11, pp.5493-5499 November 2023 5497

else

 {

 m_lightMatrix=Matrix4f().InitScale(Vector3f(0,0,0));

 SetFloat("shadowVarianceMin", 0.00002f);

 SetFloat("shadowLightBleedingReduction", 0.0f);

 }

 GetTexture("displayTexture").BindAsRenderTarget();

 //m_window->BindAsRenderTarget();

 //glEnable(GL_SCISSOR_TEST);

 //TODO: Make use of scissor test to limit light area

 //glScissor(0, 0, 100, 100);

 glEnable(GL_BLEND);

 glBlendFunc(GL_ONE, GL_ONE);

 glDepthMask(GL_FALSE);

 glDepthFunc(GL_EQUAL);

 object.RenderAll(m_activeLight->GetShader(), *this, mainCamera);

 glDepthMask(GL_TRUE);

 glDepthFunc(GL_LESS);

 glDisable(GL_BLEND);

 //glDisable(GL_SCISSOR_TEST);

 }

 SetVector3f("inverseFilterTextureSize", Vector3f(1.0f/GetTexture("displayTexture").GetWidth(),
1.0f/GetTexture("displayTexture").GetHeight(), 0.0f));

 ApplyFilter(m_fxaaFilter, GetTexture("displayTexture"), 0);

}

Function AddLight()

inlinevoidAddLight(constBaseLight&light) { m_lights.push_back(&light); }

FunctionAddCamera()

inlinevoidAddCamera(constCamera&camera) { m_mainCamera = &camera; }

4. Lighting

 Four types of lighting are used:

a. Base Light

 The base light is ambient lighting. Ambient lighting is used to produce basic colours for objects. The light used in ambient lighting
illuminates objects in all directions.

b. Directional Light

 Directional Light is lighting where the light source is located at a point that is far away. Thus, the direction or vector of light to the
object is parallel.

c. Point Light

 Point light is the lighting effect where the light source is located at a certainpoint. The point light has a certain position
andintensity.

d. Spot Light

 Spot Light is almost similar to Point Light, the difference is that in spot light there is a fall off actor where a beam of light will
appear brighter at a certain point then gradually loses it slight intensity when away from that point

International Journal of Innovation Scientific Research and Review, Vol. 05, Issue 11, pp.5493-5499 November 2023 5498

5. Material

 Two types of components are used in the material:

a. Texture

 Texture is an image in which iti sattached to a certain
object.Texture can be a regular image or a normal map

b. Lighting

 Lighting is a lighting effect that has been previously
described. There are several types of lighting used, namely
base light, direction allight, pointlight and spotlight

6. Mesh

 Mesh is the geometry of the object to berendered in the scene.
The mesh has several components.

a. Vertex Coordinate
b. Texture
c. Normals
d. Colors

RESULTS AND DISCUSSION

After implementing two types of algorithms, namely MSAA and FXAA,
we can measure three types of performance parameters, namely, the
time it takes to render one frame, frames per second, and the quality
of the resulting edge. The following are the results obtained when the
authors compared the performances of MSAA and FXAA.

Anti Aliasing
Aliasing

Milliseconds per
Frame

FPS (Frame Per
Seconds)

MSAA 40-50 ms 30-40 FPS

FXAA 16-20 ms 50-60 FPS

From this, we can see that, in terms of quality, FXAA and MSAA are
not significantly different. However, from the performan cemetrics,
namely milliseconds per frameor FPS, FXAA is able to perform the
anti-aliasing process faster than MSAA.

CONCLUSION

In this study, the authors compare the performance and results of two
anti-aliasing algorithms, namely MSAA and FXAA. From the results
above, we can conclude that FXAA is better than MSAA because it is
able to render images faster than MSAA. We can see that FXAA has
a 30-50% faster rendering time than MSAA.

REFERENCES

1. Catmull, E. Hidden-surface algorithm with ant aliasing.

Proceedings of the 5th Annual Conference on Computer
Graphics and Interactive Techniques, page 11. ACM. 1978

2. Herubel, Adrian., Biri, Venceslas. Morphological anti-aliasing
and topological reconstruction. 2011

3. Reshetov and Alexander reduced aliasingarte facts by
resampling. 2012

4. Auzinger, Thomas. Musialski, Przemyslaw., Preiner, Reinhold.,
Wimmer, Michael. Non Sampled Anti Aliasing. The Eurographic
Association. 2013

5. Akeley, K. Reality Engine Graphics. In SIGGRAPH ’93:
Proceedings of the 20th Annual Conference on Computer
Graphics and Interactive Techniques, Pages 109-116, New
York. ACM

International Journal of Innovation Scientific Research and Review, Vol. 05, Issue 11, pp.5493-5499 November 2023 5499

