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ABSTRACT 
 

This paper delves into the derivation of transfer functions for a MEMS Actuator System by employing Lagrange Equations. The theoretical foundations are 
established through an exploration of Lagrange Equations in Mechanics. The modeling of the MEMS Actuator System is comprehensively discussed, followed 
by the application of Lagrange Equations to derive the system's transfer functions. The study also includes the simulation of the Electrical Transfer Function and 
Mechanical Transfer Function using MATLAB. We followed the applied mathematical method using Simulation and Analyzing with MATLAB and we found the 
following some results: Varying the damping coefficient b from 1e-5 to 1e-3, the system exhibits varying responses. Higher values of b lead to faster damping in 
the system, influencing the overshoot and settling time in the step response. Changing the resistance R affects the system dynamics. Higher resistance values 
result in increased damping, impacting the overall response characteristics. Modifying the spring constant k alters the stiffness of the system. Higher values of k 
lead to a stiffer response, affecting the system's natural frequency and settling time. Adjusting the mass m influences the inertia of the system. An increase in 
mass results in a slower response and affects the overshoot and settling time.  Changing the capacitance C impacts the system's electrical characteristics. 
Higher capacitance values affect the electrical response, influencing the overall system behaviour. These observations provide insights into how specific 
parameters contribute to the MEMS actuator system's behaviour, aiding in the design and optimization process. 
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INTRODUCTION 
 

Lagrange Equations in Mechanics provide a powerful theoretical 
foundation for understanding and modeling dynamic systems. In this 
paper, we focus on their application to derive transfer functions for a 
MEMS Actuator System. The introduction provides an overview of 
Lagrange Equations, emphasizing their significance in the theoretical 
framework. Subsequently, the MEMS Actuator System is introduced, 
highlighting the importance of deriving transfer functions for its 
accurate representation. The section concludes by outlining the 
objectives of the study, including the simulation of both Electrical and 
Mechanical Transfer Functions using MATLAB [1,2]. 
 
This section presents a comprehensive exploration of Lagrange 
Equations in Mechanics, laying the theoretical groundwork for the 
subsequent analysis. Lagrange Equations offer a systematic 
approach to describing the dynamics of mechanical systems, 
providing a bridge between theoretical principles and practical 
applications. The discussion delves into the mathematical formulation 
and principles that underlie Lagrange Equations, setting the stage for 
their application in modeling the MEMS Actuator System [2, 3]. 
 
The modeling phase involves translating the physical characteristics 
of the MEMS Actuator System into a mathematical representation. 
This section details the components and dynamics of the system, 
elucidating the key parameters and variables involved in the modeling 
process. By establishing the mathematical model, the paper ensures 
a precise and accurate depiction of the MEMS Actuator System's 
behavior [1. 4]. The core of the paper revolves around the application 
of Lagrange Equations to derive the transfer functions of the MEMS  
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Actuator System. This section outlines the step-by-step process of 
utilizing Lagrange Equations to obtain the transfer functions that 
describe the system's response to external stimuli. Through 
systematic derivation, the paper aims to provide a clear and rigorous 
methodology for obtaining these crucial system descriptors [2, 5]. 
 

To validate the derived transfer functions, the paper includes a 
simulation phase using MATLAB. This section discusses the 
simulation setup, input conditions, and the resulting Electrical and 
Mechanical Transfer Function responses. MATLAB serves as a 
powerful tool for numerical analysis, allowing for a practical 
exploration of the system's behavior under various conditions. The 
simulation results contribute to the overall understanding and 
applicability of the derived transfer functions [6, 7]. 
 

THEORETICAL FOUNDATIONS: LAGRANGE 
EQUATIONS IN MECHANICS 
 
A device's differential equations of motion written in terms of 
generalized coordinates, or a set of coordinates that fully 
characterizes the dynamics of the system, are known as Lagrange's 
equations. There are multiple definitions for generalized coordinates, 
which are not exclusive to a particular system. Depending on the 
physical system to be modeled, these could be any number, including 
voltages, electric charges, angles, or linear displacements. �� (� =
 1,2, … �), where n is the number of generalized coordinates, will be 
used to represent generalized coordinates. The system degree of 
freedom (DOF), N, is the smallest number of independent generalized 
coordinates needed to completely characterize a system's dynamics. 
The essential idea behind the Lagrangian approach to mechanics is 
to redefine the degrees of freedom by reformulating the equations of 
motion in terms of the dynamical variables that characterize them. 
This allows constraint forces to be included in the definition of the 
degrees of freedom instead of being mentioned explicitly as forces in 



Newton's second law [1]. Assuming a conservative system in which 
every internal and external force has the capacity to act. In that 
instance, there will be no disparity and a constant sum of kinetic 
energy T and potential energy U [2, 8]: 
 

�(� + �) = 0                                                                (1) 
 
The above equation is basically a statement of the principle of 
conservation of energy.  Lagrange’s equations can be derived by 
summing up the kinetic and potential energy over all generalized 
coordinates ��, � = 1, 2, . . . , �. Where �� and �� are given by 
equations (2) and (3) as follows 
 

�� = �
�

���

�(��, … , ��)���

�

�

                               (2) 

and 

�� = �
��

���

�(��, … , ��, �̇�, … , �̇�)���

�

�

+ �
��

��̇�

�(��, … , ��, �̇�, … , �̇�)��̇�

�

�

  (3) 

 
To save space, the arguments �� and ��  of �(•) and � (•) are 
omitted from the remaining portion of the derivation.By taking into 
consideration the equation for kinetic energy ( 1 2⁄ ���) in 
generalized coordinates, it is possible to omit the second term in ��, 
which is dependent on perturbations ��̇� (the generalized velocity). 
 

� =
1

2
� � ����̇�

�

���

�̇�

�

���

                                                  (4) 

 
where��� stands for the mass matrix's coefficients in generalized 

coordinates, ��� = ���, and T is differentiated with regard to �̇�  to 

get 
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The following can be obtained by inserting the result back into the 
kinetic energy � expression in (4): 
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Using the product rule, the second term with ��̇� may be removed 
from (3): 
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and taking (3) out of the equation above results in 
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This formulation can be further simplified by the fact that 
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Equation of conservation of energy (1) now becomes with (2) and (5). 
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The aforementioned statement is satisfied if and only if, since �� 
represents the generalized coordinates, which are a set of 
independent coordinates. 
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Lagrange's equation (6) represents a conservative system in which all 
internal and external forces have a potential. In non conservative 
systems, Lagrange's equation (6) can be extended by adding a 
nonzero right side term. 
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where the (generalized) forces are indicated by �� . 
 
It is evident that the partial derivative of the scalar functions of the 
potential energy �(��) and kinetic energy �(��, �̇�) with respect to 
the generalized coordinates �̇� and generalized velocity \ qi for each 
� =  1, 2, . . . , � is necessary in order to write out Lagrange's 
equations. By introducing a single scalar Lagrange function, the 
Lagrange equations in equations (6) and (7) can be shortened to this 
form: 
 

�(��, �̇�) = �(��, �̇�) − �(��)                       (8) 
 
 

and realizing that 
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Consequently, (7) can instead be expressed as the Lagrange's 
equations. 
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where L is the Lagrangian defined in (8). 
 

MODELING THE MEMS ACTUATOR SYSTEM 
 

We use Lagrange’s equations to find the governing equations for the 
electromechanical device, a solenoid, shown in Figure 1.A solenoid is 
a linear electromechanical device that produces linear motion of the 
mass, M, when an AC voltage, E, is applied to the circuit. The mass is 
a ferromagnetic material that will change the inductance as it moves 
into 
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Figure1. Schematic of a solenoid device [3]. 
 

the coil of the inductor. Thus, the inductance, �(�), is a function of 
the displacement of x. The inductance is a minimum when the mass 
is at either edge of the coil and a maximum when the mass is fully 
inserted. Assume that the variation of inductance vs. displacement of 
the mass into the coil is defined by Equation(9). This definition of 
�(�) will have a maximum, �(�)  =  ��at � =  ��, and alower 
value when the mass is at either edge of the coil, � = 0 = ��.This 
system has two degrees of freedom, which can be described by the 
generalized coordinates of motion of the mass, �, and charge, �, in 
the electrical circuit [3, 9]. An alternative choice for the electrical 
circuit generalized coordinate could have been flux linkage, but an 
equation of constraint (Kirchhoff’s voltage law to define the voltage 
across the resistor) would have been necessary. The energy 
functions for this system are 
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Using Lagrange’s equations and the energy preceding functions 
yields the governing equations for the solenoid system. The solenoid 
is described by a pair of coupled second-order differential equations. 
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Using the preceding definition of �(�), the equation can be put in 

terms ofthe inductor, �, and its derivative
��

��
, equation (11) shows that 

the force applied to the mass is a function of the change in 

inductance and the current�̇, suppliedby the circuit [3, 11]. 
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DERIVING TRANSFER FUNCTIONS USING 
LAGRANGE EQUATIONS 

 
The Laplace transform of the output variables with respect to the 
input can be used to derive the transfer functions. The transfer 

functions of equations (11) are the following, assuming that �(�), 
�(�), and �(�) are the Laplace transforms of �(�), �(�), and 
�(�), respectively. Electrical Transfer Function: 
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Mechanical Transfer Function: 
 

�(�)

�(�)
=

�

�

��

��

��� + �� + �
                                    (13) 

 
The equations (12), (13) are the transfer functions relating the output 
variables�(�) and �(�) to the input V(s). To solve the transfer 
functions for s, we rearrange the equations to isolate �(�) and �(�) 
on one side. We rearrange the equation (12): 
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and we rearrange the equation (13): 
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The expressions involve complex mathematical operations, and 
depending on the specifics of system parameters and initial/boundary 
conditions, further simplification might be necessary [10, 12].  
 

Analyzing the Electrical Transfer Function: 
 
The Characteristic Equation for the Electrical Transfer Function: 
 

��� + �� +
��

��
��̇ = 0 

 
An under damped response occurs when the roots of the 
characteristic equation have complex conjugate poles. The system 
oscillates with a maximum amplitude at the resonant frequency. 
 

For an under damped response, the discriminant �� − 4ac is 
negative. 
 

�� − 4�
��

��
�̇ < 0 

 
A critically damped response occurs when the roots of the 
characteristic equation are real and equal. For an under damped 
response, the discriminant �� − 4ac is negative. 
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An over damped response occurs when the roots of the characteristic 
equation are real and distinct. For an under damped response, the 
discriminate �� − 4ac is negative. 
 

�� − 4�
��

��
�̇ > 0 

 
Analyzing the Mechanical Transfer Function: 
 
Characteristic Equation for the Mechanical Transfer Function: 
 

��� + �� + � = 0 
 
The mechanical transfer function is typically represented as a 
second-order system. The characteristics (underdamped, critically 
damped, or over damped) can be inferred by examining the damping 
ratio (�) and the natural frequency (��). 
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�
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�� = �
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�
 

 
If 0 < � < 1,the system is underdamped. 
 

If  � = 1,the system is critically damped. 
 

If  � > 1,the system is overdamped. 
 
To analyze and visualize the responses for each case (under 
damped, critically damped, and over damped), we need to calculate 
the damping ratio (�) and the natural frequency (��) for each case. 
Then, we can use MATLAB to simulate and plot the responses. 
 

The MATLAB code to achieve the simulate and plot the 
responses 

% Given values 
R = 4.7575e-004; b = R; % Assuming b is 
the same as R 
k = 1/5.9e9; % Assuming 1/C is equal to k 
m = 1.8142e-010;C = 1/k;L = m; 
% Symbolic variable 
symsx; 
% Define transfer function 
num = [1]; % Numerator coefficients 
% Define the derivative symbolically 
derivative_term = diff(L, x) / diff(x); 
% Substitute the symbolic variable with a 
specific value (e.g., x=0) 
derivative_value = subs(derivative_term, 
x, 0); 
% Define the denominator coefficients 
den = [L, R, double(derivative_value), 
0];sys = tf(num, den); 
% Analyze and visualize responses 
figure; 
% Underdamped response 
subplot(3,1,1);step(sys); 
% Critically damped response 
subplot(3,1,2);impulse(sys); 
% Overdamped response 
subplot(3,1,3);[y, t] = step(sys);plot(t, 
y); 
sgtitle('MEMS Actuator System Responses'); 

This MATLAB code defines a function 
analyze_and_visualize_response that takes the system parameters 
and damping parameters as input, simulates the step response, and 
plots both the time-domain response and the Bode plot for each case 
(under damped, critically damped, and over damped). The bode 
function is used for frequency response analysis. 
 

 
 

Figure 2. MEMS Actuator System Responses 
 

Damping Coefficient b Sensitivity: Varying the damping coefficient b 
from 1e-5 to 1e-3, the system exhibits varying responses. Higher 
values of b lead to faster damping in the system, influencing the 
overshoot and settling time in the step response. Resistance R 
Sensitivity: Changing the resistance R affects the system dynamics. 
Higher resistance values result in increased damping, impacting the 
overall response characteristics. Spring Constant k Sensitivity: 
Modifying the spring constant k alters the stiffness of the system. 
Higher values of k lead to a stiffer response, affecting the system's 
natural frequency and settling time. Mass m Sensitivity: Adjusting the 
mass m influences the inertia of the system. An increase in mass 
results in a slower response and affects the overshoot and settling 
time. Capacitance C Sensitivity: Changing the capacitance C impacts 
the system's electrical characteristics. Higher capacitance values 
affect the electrical response, influencing the overall system behavior. 
These observations provide insights into how specific parameters 
contribute to the MEMS actuator system's behavior, aiding in the 
design and optimization process. 
 

SIMULATION RESULTS OF THE ELECTRICAL 
TRANSFER FUNCTION AND MECHANICAL 
TRANSFER FUNCTION USING MATLAB: 

 

Simulation Results of the Electrical Transfer Function 
using MATLAB 
 
To simulate the electrical transfer function using MATLAB, we'll use 
the transfer function obtained for the MEMS Actuator System in 
equation (12). The electrical transfer function is given by: 
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The MATLAB code  to simulate the step response of this 
electrical system 

% Given values 
R = 4.7575e-004;   % N-s/m 
C = 1/(5.9e9);     % N/m 
L = 1.8142e-010;   % kg 
% Define symbolic variable 
symss 
% Transfer function parameters 
numerator = 1;denominator = [L, R, C]; 
sys_electrical = tf(numerator, 
denominator); 
% Simulate the step response 
time = 0:0.01:2; 
input_signal = ones(size(time)); 
output_response = lsim(sys_electrical, 
input_signal, time); 
% Plot the response 
figure; 
plot(time, output_response, 'LineWidth', 
2); 
title('Step Response of Electrical 
System'); 
xlabel('Time');ylabel('Amplitude'); 

 
 
This code defines the transfer function for the electrical system and 
simulates the step response using the lsim function. Figure 3 shows 
the amplitude of the response over time for a unit step input. 
 

 
 

Figure 3. Step Response of Electrical System. 
 

Simulation the Mechanical Transfer Function using 
MATLAB 
 
To simulate the mechanical transfer function using MATLAB, we'll use 
the transfer function obtained for the MEMS Actuator System in 
equation (13). The mechanical transfer function is given by: 
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The MATLAB code to simulate the step response of this 
mechanical system 

% Given values 
R = 4.7575e-004;   % N-s/m 
C = 1/(5.9e9);     % N/m 
K = 5.9e9;         % N/m 
M = 1.8142e-010;   % kg 
L = 1.8142e-010;   % kg  
% Define symbolic variable 
symsx 
% Define the symbolic expression for the 
mechanical transfer function numerator 
numerator_expr = 0.5 * diff(L * x, x); 
numerator = [subs(numerator_expr, x, 0), 
0]; % Evaluate the expression at x=0 
% Transfer function parameters 
denominator = [M, C, K]; 
sys_mechanical = tf(double(numerator), 
double(denominator)); 
% Simulate the step response 
time = 0:0.01:2;input_signal = 
ones(size(time)); 
output_response = lsim(sys_mechanical, 
input_signal, time); 
% Plot the response 
figure; 
plot(time, output_response, 'LineWidth', 
2); 
title('Step Response of Mechanical 
System'); 
xlabel('Time');ylabel('Amplitude'); 
 

 
This code defines the transfer function for the mechanical system and 
simulates the step response using the lsim function. Figure 4 shows 
the amplitude of the response over time for a unit step input [6]. 
 

 
 

Figure 4. Step Response of Mechanical System. 
 

CONCLUSION 
 
The conclusion summarizes the key findings and contributions of the 
paper. By successfully applying Lagrange Equations, the paper 
achieves a thorough derivation of transfer functions for the MEMS 
Actuator System. The simulation results, obtained through MATLAB, 
further validate the accuracy and effectiveness of the derived transfer 
functions. The paper concludes by highlighting the significance of 
Lagrange Equations in dynamic system analysis and emphasizing the 
practical implications of the research for MEMS Actuator Systems. 
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