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ABSTRACT 
 

The expanding integration of the Internet of Things (IoT) into numerous industries has boosted need for efficient, scalable, and secure data management 
solutions. Traditional database approaches are frequently unable to handle the dynamic, high-volume, and diverse data produced by IoT devices. This analysis 
examines the important breakthroughs in database technology designed for IoT contexts, with an emphasis on architectural improvements, query processing 
methodologies, performance optimization tactics, and security upgrades. The research emphasizes the value of real-time data processing, low-latency access, 
and flexibility to both centralized and decentralized infrastructures. Furthermore, the research highlights the need of cloud-edge integration and intelligent 
resource management in maintaining responsiveness and efficiency. This article gives a complete overview of current trends as well as insights into future 
prospects for developing strong data infrastructures in IoT ecosystems by assessing various methodologies and system capabilities. 
 

Keywords: Internet of Things (IoT), Database Management Systems (DBMS), NoSQL Databases, Real-Time Data Processing, Edge and Cloud Computing,  
   Data Security and Privacy, IoT Data Optimization. 
 
 
 

INTRODUCTION 
 

IoT devices create massive volumes of data, frequently in real time, 
requiring efficient storage, retrieval, and analysis. Traditional 
relational databases (RDBMS) fail to provide the necessary scalability 
and flexibility for IoT applications. NoSQL databases, with their 
schema-less architecture, have emerged as a viable alternative, 
providing increased scalability and handling of diverse data.[1][2] The 
necessity of modifying database management systems (DBMS) to 
manage the increasing amounts of data produced by Internet of 
Things (IoT) systems is examined in the introduction. In order to solve 
issues like security, concurrent data access, and query performance 
optimization—all of which are critical for applications that need instant 
data processing—it places a strong emphasis on the development of 
real-time DBMS. In order to lessen dependency on real-time DBMS, 
the study investigates whether correctly designed conventional DBMS 
can handle IoT data efficiently. The authors focused on improving 
data accessibility for machine learning, statistical analysis, and 
Knowledge Discovery in Databases (KDD) by simulating concurrent 
data writing to assess performance. The goal of the project is to 
increase data availability and enhance concurrent access for IoT-
based data mining applications.[3].The difficulties of handling the 
enormous volumes of data produced by IoT devices in fog and cloud 
computing settings are discussed in the work. The "Foggy Weather 
Architecture with Tangential Data Control System" is a revolutionary 
system that use fog nodes to filter and monitor IoT data in order to 
address these problems. The system's dynamic algorithm determines 
whether to process data in the cloud or the fog, giving priority to fog 
computing during steady times and cloud processing during moments 
of fast data changes. This method advances IoT applications in cloud 
settings by optimizing resource utilization, enhancing responsiveness, 
and increasing the scalability and efficiency of IoT data 
management.[4] The introduction highlights issues including security, 
scalability, and transparency in handling IoT data while discussing the  
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substantial influence of the Internet of Things (IoT) on data collecting,  
processing, and storage. The authors suggest an optimized 
blockchain architecture that use sharding and pruning strategies to 
enhance scalability and handle massive data volumes from several 
IoT devices in order to address these problems. Although the concept 
has promise, the introduction points out that further study is required 
to confirm how well it works in practical situations and to fortify its 
privacy and security features. This lays the groundwork for creating 
safe and effective IoT data management systems.[5] 
 
The introduction addresses the problems and significance of data 
management and analytics inside the Internet of Things (IoT). It 
characterizes IoT as a network of interconnected devices that 
produce extensive data and emphasizes the necessity for efficient 
data management, encompassing data collection, storage, 
processing, and analysis. Principal challenges encompass scalability, 
data integrity, and interoperability. Analytical methodologies such as 
machine learning and predictive analytics facilitate the extraction of 
useful insights, empowering firms to make data-driven choices. 
Addressing challenges associated with interoperability, privacy, and 
data quality is essential for utilizing IoT data to foster innovation and 
change across sectors.[6] The significance of backend databases in 
facilitating Internet of Things applications—which produce enormous 
volumes of data—is emphasized in the introduction. It emphasizes 
the necessity of dependable, safe, and successful IoT systems, 
emphasizing that database performance is essential to the success of 
IoT services. In contrast to standard database applications, the 
research addresses particular issues by measuring database 
performance in IoT contexts. Databases must increasingly satisfy 
increased performance standards as technology develops, 
necessitating constant study and improvement.[7] The opening 
stresses how important backend systems are for handling the huge 
amounts of data that IoT devices produce. It shows how important it 
is to have IoT apps that work well, are safe, and are stable. It also 
shows how important database speed is for making sure IoT services 
work well. The study's goal is to compare how well different 
databases work in IoT settings, taking into account the special 
problems these settings have compared to regular database 



programs. As technology improves, more IoT apps will need 
databases that work faster. This shows how important it is to keep 
researching and coming up with new ideas.[8] The opening talks 
about how AI, Machine Learning (ML), the Internet of Things (IoT), 
Blockchain, and Big Data analytics have changed Business 
Intelligence (BI). BI systems used to only do simple analysis, but now 
they can also provide real-time, predictive, and automated 
intelligence to help businesses stay ahead of the competition. These 
technologies improve BI by offering tracking in real time, prediction 
analytics, and safe, clear data management. But adding them to BI 
tools is hard because of issues like data safety, scalability, and 
interoperability. The study's goals are to look into how these 
technologies can be used to make BI better, find problems with 
integration, come up with a plan for successful convergence, and look 
at examples of AI-driven BI projects that have worked well.[9] The 
opening talks about how hard it is to handle the huge amounts of time 
series data that are being created by the growing IoT environment. A 
lot of study has been done on how to reduce integer value data, but 
not much on how to handle and retrieve floating-point data. To fix 
these problems, the study suggests a way to index floating-point time-
series data within a compression method that doesn't lose any 
information. This method makes it easy to get data using timestamps 
without having to fully extract it, which makes storage and access 
more efficient. The opening also talks about plans for experiments to 
show how better storage efficiency and real-time data access can be 
achieved.[10] The introduction emphasizes the necessity of 
contrasting MongoDB and InfluxDB's scalability and performance in 
order to manage time-series data in Internet of Things contexts, 
where high-concurrency workloads are typical. Although both 
databases are widely used, little study has been done on how well 
they work in these kinds of situations. Using a Python-based client 
script, the study seeks to assess latency, resource consumption, and 
scalability in order to provide insightful information that will help 
choose the best database for IoT data management.[11]The 
introduction emphasizes the Internet of Things' expanding influence 
and the difficulties in handling the massive amounts of data produced 
by IoT devices. Due to latency problems with traditional cloud-based 
data management, edge and fog computing are being adopted for 
quicker, localized data processing. The study suggests a novel data 
interaction model to improve performance efficiency across the IoT 
data life cycle and highlights the significance of a cooperative data 
flow between edge and cloud to optimize data handling.[12]           
The introduction emphasizes the increasing expansion of IoT devices 
and the necessity for effective data processing to handle their 
massive data volumes. The article suggests edge computing for 
quick, local data processing to improve IoT network performance. 
Edge node selection, data preparation, distributed analytics, and 
dynamic resource allocation are part of the authors' security and 
privacy-focused strategy. They also suggest further study and 
evaluate their strategy to enhance IoT networks and encourage 
innovation.[13]The fast growth of IoT systems presents data 
management issues. It stresses the importance of efficient DBMS for 
real-time data processing, security, and concurrent access. The study 
examines whether correctly designed common DBMS can enable IoT 
edge devices by improving data retrieval, managing concurrent 
access, and boosting user and data mining data availability. The 
project intends to increase real-time data processing and IoT 
application efficiency.[14] IoT devices like sensors and mobile 
devices generate continuous data, which presents issues. Due to 
heterogeneous and high-velocity data, effective data processing and 
integration are needed. Due to the complexity of IoT data, 
conventional frameworks typically struggle with query replies, 
therefore an effective indexing system is crucial. Analyzing streaming 
data situations and optimizing indexing strategies, the research 
develops a system to handle these difficulties. Experiments will 

demonstrate the solution's efficacy compared to current 
approaches.[15] The introduction emphasizes the importance of 
machine learning (ML) in interpreting IoT data. By recognizing 
abnormalities and malicious assaults, ML increases real-time data 
processing, decision-making, and security. Big data analytics and ML 
improve IoT data analysis. The study also recommends researching 
sophisticated ML techniques and data preprocessing to enhance IoT 
data analysis using real-time sensors like DHT11.[16] IoT services 
are improving urban life and operational efficiency in smart cities, 
according to the introduction. It emphasizes the necessity for dataset 
optimization to improve smart city decision-making prediction 
processes. The study addresses a gap in IoT and smart city research 
on optimization methods. PSO can filter and optimize datasets before 
training, boosting prediction accuracy and efficiency. Their technique 
will be validated through simulations to deliver accurate and timely 
smart city IoT solutions.[17] The introduction discusses how standard 
cloud computing cannot manage IoT device data, causing latency 
and capacity concerns. Smart city applications require real-time data 
processing, and edge computing reduces latency and optimizes 
bandwidth by processing data closer to the source. Edge nodes with 
machine learning improve real-time analysis and decision-making. 
The report also addresses edge computing security and resource 
distribution issues and suggests further research in edge AI and 
renewable energy for sustainable IoT solutions [18]. 
 

BACKGROUND THEORY 
 
1.  Internet of Things (IoT) and Data Management 
 
The Internet of Things (IoT) is a network of interconnected physical 
objects that gather and share data using integrated sensors, 
software, and communication technology. As IoT expands into 
industries such as healthcare, manufacturing, smart cities, and 
transportation, handling the massive and diverse data created 
becomes important. Real-time data management is critical for 
ensuring that IoT applications make timely decisions, respond quickly, 
and operate optimally. The key issues are the diversity of data 
formats, resource limits, and the necessity for efficient storage and 
processing procedures.[19][20][21] 
 
2.  Machine Learning and AI for Data Optimization 
 
Artificial intelligence (AI) and machine learning (ML) have transformed 
data management tactics for IoT devices. Techniques like anomaly 
detection, predictive analytics, and classification models help to 
improve real-time decision-making and system efficiency. 
Frameworks like the Machine Learning Analytic-Based Data 
Classification Framework (MLADCF) use hybrid models to optimize 
energy usage and resource allocation in restricted contexts. AI also 
dramatically improves transactional integrity and data security in 
distributed database systems by anticipating conflicts and allowing 
self-optimization techniques.[22][20] 
 
3.  Big Data and Business Intelligence Integration 
 
Big Data has emerged as a fundamental component of Business 
Intelligence (BI) frameworks as a result of the proliferation of Internet 
of Things devices. An intelligent and automated decision-making 
process may be facilitated by integrating Big Data with artificial 
intelligence, machine learning, and the internet of things. Blockchain 
provides additional assistance for the integrity and security of data. 
Collectively, these technologies make it possible for current business 
intelligence systems to go beyond traditional descriptive reporting to 
proactive, self-sufficient decision support systems.[23] 
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4.  Distributed and NoSQL Databases in IoT 
 
Due to scalability and flexibility restrictions, traditional relational 
databases frequently fail to manage IoT data effectively. NoSQL 
databases, such as MongoDB, Cassandra, and Redis, provide high 
availability, horizontal scalability, and are better suited to unstructured 
and heterogeneous data. Performance tests show that MongoDB 
frequently outperforms relational systems such as MySQL in terms of 
latency and throughput, particularly in cloud contexts. Docker-based 
solutions of distributed databases have demonstrated promising 
results for Industrial IoT, providing containerization benefits for 
deployment and scalability.[24][25][26] 
 
5.  Real-Time Processing and Streaming Data 
 
In IoT networks, the capacity to interpret data in real time is essential. 
The TSBPS model and other streaming architectures and frameworks 
that use spatial-temporal chunking improve data input, storage, and 
retrieval performance. Real-time systems require not only speed, but 
also the ability to handle volatile data through effective caching and 
indexing algorithms. These solutions eliminate system latency and 
facilitate applications like autonomous driving and intelligent 
surveillance, which rely on instant input from sensor data.[27] 

 
6.  Privacy and Security in IoT Data 

 
The Internet of Things (IoT) presents substantial difficulties to privacy 
and security due to its widespread nature. It is possible for the 
personal information of users to be exposed by continuous 
surveillance and monitoring. In accordance with legislation such as 
the General Data Protection Regulation (GDPR), privacy-preserving 
identifiers such as pseudonyms are utilized in order to reduce these 
dangers. Identity management systems (IdM) that allow for regulated 
re-identification and incorporate pseudonymity are one of the most 
important factors in ensuring that data minimization and accountability 
are maintained. In addition, the safety of sensitive Internet of Things 
data is ensured by security mechanisms such as encryption, role-
based access, and secure transmission protocols.[28] 

 

LITERATURE REVIEW 
 
Zhou et al. (2024) investigated the incorporation of artificial 
intelligence with edge computing in Internet of Things (IoT) systems, 
with a particular focus on the ways in which AI-driven decision-
making might improve the efficient processing of real-time data. As a 
result of their research, they discovered that while edge computing 
helps to increase security and reduce latency in Internet of Things 
applications, integrating it with artificial intelligence further improves 
scalability, performance, and autonomy. In addition, they identified 
issues such as restricted computer resources and decreased energy 
efficiency, both of which need to be addressed through the utilization 
of hardware accelerators and federated learning strategies. 
 
Dias et al. (2019) an investigation on the efficiency of NoSQL 
databases, in particular Cassandra, in managing time-series data 
from the Internet of Things was carried out. Their findings indicated 
that the right adjustment of database compaction algorithms may 
have a considerable influence on both the response time and the 
storage efficiency of operations. Their findings highlight the 
significance of matching database configurations with properties of 
Internet of Things data, such as entries that are organized, time-
stamped, and seldom updated, in order to guarantee effective storage 
and retrieval in large-scale systems. 

 
Kang and Song (2024) We introduced a system that makes use of 
multi-versioned data semantics and LSM-tree structures in order to 
optimize time-series searches in Internet of Things databases. In 
order to enhance query performance and limit the number of 
unwanted data merges, they used algebraic approaches. This was 
especially important when dealing with delayed, duplicated, and 
repaired data. According to the findings of their research, employing 
version-aware operations inside query plans has the potential to 
greatly improve operational efficiency in industrial Internet of Things 
environments. 
 
Wang et al. (2019) It was suggested that actor-oriented databases 
(AODB) be utilized for the modeling of Internet of Things data 
systems. Their strategy intended to manage data from numerous 
Internet of Things devices that were very dynamic and diverse by 
utilizing communication that was dispersed and asynchronous. 
Through the use of case studies, the authors proved that AODBs 
provide a flexible and scalable architecture that is ideal for a wide 
variety of Internet of Things applications, particularly those that 
require real-time interactions and decentralized centralized control. 
 
Gadde (2022) We investigated the function that artificial intelligence 
plays in the process of dynamic data sharding for huge databases. 
Better load balancing, lower latency, and higher throughput are the 
results of his introduction of a methodology that is based on machine 
learning and dynamically updates data partitions depending on real-
time workloads. According to the findings of the study, artificial 
intelligence has the ability to not only improve database performance 
but also cut down on the amount of operational overhead required to 
manage big, dispersed data systems. 
 
Lo et al. (2019) a comprehensive literature assessment on the 
application of blockchain technology in Internet of Things contexts 
was carried out. Their investigation classified the current solutions 
into two categories: those that addressed the difficulties of data 
management and those that addressed device (thing) management. 
They came to the conclusion that although blockchain technology has 
a number of benefits, including decentralization and immutability, its 
incorporation into the Internet of Things (IoT) is still confronted with 
challenges concerning performance, scalability, and implementation 
maturity. 
 
Yuan (2024) The problems and techniques for incorporating artificial 
intelligence into Internet of Things systems were reviewed, with a 
particular emphasis on real-time decision-making and contexts with 
limited resources. For the purpose of enabling effective deployment of 
artificial intelligence on low-power Internet of Things devices, the 
article examined several strategies such as model compression, 
quantization, and edge computing. It was stressed that lowering 
latency and energy consumption is essential for the success of AI-
driven Internet of Things systems in applications such as emergency 
response and predictive maintenance. 
 
Judvaitis et al. (2024) a data management system that places an 
emphasis on privacy, scalability, and configurability was presented for 
the Internet of Things (IoT)–Edge–Cloud progression. The fact that 
their approach incorporates visualization capabilities in addition to 
differential privacy and energy-efficiency features makes it suited for 
monitoring critical infrastructure. In order to guarantee deployments 
that are both secure and effective, the research demonstrates the 
advantages of integrating data flow management across different 
types of computing systems at the same time. 
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Zahedinia et al. (2023) IoT data caching techniques were explored in 
Named Data Networking (NDN) for the purpose of improvement. In  
order to address the ephemeral nature of Internet of Things (IoT) 
data, they devised a caching mechanism that was based on the data 
lifespan and the position of the node. In order to improve the 
effectiveness of caching in Internet of Things settings, their technique 
attempted to minimize redundant operations and maximize memory 
use. 
 
Nambiar and Mundra (2022) examined the similarities and 
differences between data lakes and data warehouses as core 
technologies for business data management. They made the 
observation that data lakes provide flexibility for storing raw data 
types that are different, but data warehouses are appropriate for 
organized analytics that are driven by a specific objective. Through 
their work, they brought to light the significance of aligning storage 
strategies with the data requirements of an organization, particularly 
in the context of big data analytics and the integration of the internet 
of things. 
 
Lee et al. (2023) in Internet of Things contexts, a data access control 
and key agreement system that is based on blockchain technology 
was presented. Their method combines blockchain technology with 
Ciphertext-Policy Attribute-Based Encryption (CP-ABE) in order to 
guarantee granular access control and the protection of users' 
privacy. Additionally, the system offers techniques for mutual 
authentication and key agreement, which guard against a variety of 
security risks such as tracking and guessing attacks. Additionally, it 
enables efficient and reliable data outsourcing and access. 
 
Cooper and James (2009) emphasized the significant difficulties that 
are associated with the maintenance of databases for the Internet of 
Things (IoT). They stressed how difficult it is to manage many sorts of 
data, such as environmental, identity, and location data, which are 
created by a large number of devices that are connected to one 
another. The most important topics that were highlighted were data 
indexing, querying, transaction processing, and integration across a 
variety of platforms. These are all critical for allowing Internet of 
Things settings that are both efficient and scalable. 
 
Poornima et al. (2023) data management for Internet of Things (IoT) 
and Digital Twin (DT) settings was investigated, with a particular 
emphasis placed on the incorporation of real-time sensing, 
autonomous control, and analytics. According to what they observed, 
Digital Twins are able to synchronize with entities that exist in the 
actual world in order to facilitate decision-making and optimization in 
smart manufacturing. For the purpose of supporting modeling, 
simulation, and real-time operations, the study highlighted the 
difficulties that are caused by latency, hardware limits, and 
fragmented data, and it proposed solutions that are data-centric and 
driven by artificial intelligence. 
 
Hewa et al. (2022) suggested a security architecture for cloud 
manufacturing and 5G-enabled Industrial Internet of Things (IIoT) 
computing that is based on fog computing and blockchain technology. 
By moving security functions to the fog layer, their hybrid approach 
removes the possibility of a single point of failure and decreases the 
amount of delay experienced. In order to provide trust, data privacy, 
and low-latency secure communications between IIoT nodes and 
cloud services, the system incorporates capabilities such as dynamic 
certificate creation and symmetric key agreements. 
 
Al-Atawi (2024) established a hybrid architecture known as 
Interconnected Intelligence (II), which combines Internet of Things 
(IoT), cloud computing, and fog computing. The goal of this 

architecture is to improve data management and decision-making in 
real time. By utilizing this design, latency is decreased, resource 
efficiency is improved, and data security is strengthened. In real-world 
testing, performance gains were exhibited in decision accuracy, 
energy economy, and system scalability. These enhancements 
validated the usefulness of the system across both urban and 
industrial Internet of Things installations. 
 
Andronie et al. (2023)A comprehensive evaluation of the Internet of 
Robotic Things (IoRT) was carried out, during which the use of large 
data management methods, deep learning-based object recognition, 
and geographic simulation tools were analyzed. Within the context of 
Internet of Things settings, they placed particular emphasis on the 
role that machine learning and sensor fusion play in improving 
autonomous decision-making and real-time monitoring capacity. 
According to the findings of their research, simulation-based digital 
twins and federated learning have the potential to be effective in the 
coordination of complex robotic systems. 
 
Clavijo-López et al. (2024)an Intelligent Database Management 
System (ML-IDMS) that is based on machine learning was presented 
for use in scenarios including big data analytics and the internet of 
things. For the purpose of providing real-time data retrieval, intelligent 
decision-making, and optimal resource use, the system incorporates 
machine learning techniques into database management system 
designs. The findings demonstrated enhanced metrics in query 
execution, data correctness, and network performance, which 
exemplifies the potential of machine learning-based intelligent data 
management systems to reimagine existing intelligent data systems. 
 
Doan et al. (2020) proposed a system that combines lossless 
compression with efficient indexing in order to handle the issues that 
are associated with handling streaming data from the Internet of 
Things. Their technique enables the integration of data in real time 
from a variety of sources and permits the retrieval of information 
without going through the process of full decompression. Through the 
utilization of timestamp-based indexing inside compressed datasets, 
their solution dramatically improves both the efficiency of storage and 
the throughput of queries being executed. 
 
The fast proliferation of the Internet of Things (IoT) has resulted in an 
increase in data production, necessitating resilient and scalable 
database systems adept at managing substantial, real-time, and 
diverse data. Conventional relational databases frequently fail to 
satisfy these requirements, leading to the implementation of more 
adaptable, distributed, and sophisticated data management solutions. 
This table provides a comparative examination of several database 
structures in the context of IoT. It emphasizes essential aspects such 
query language, optimization techniques, security protocols, 
performance indicators, and compatibility with cloud and edge 
installations. This comparative analysis seeks to elucidate the 
advantages, drawbacks, and appropriateness of each system for 
diverse IoT contexts, providing insights into the utilization of 
sophisticated databases to enhance data administration in 
progressively intricate and data-heavy settings. 
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Table 1: "Database Systems and Architectures for Internet of Things Data Management: A Comparative Analysis" 
 
#Ref Database Type 

& Name 
Query 
Language 

Optimization 
Techniques 

Security 
Mechanisms 

Performance 
Metrics 

Cloud/Edge Support 

[29] "MongoDB 
(Time Series 
Database)" cell 
 

"MongoDB 
Query Language 
(MQL)" cell 
 

Streaming ETL, Filtering 
Mechanism (value 
alteration, precision 
filter),  Redis Streams for 
analytical purposes, 
Kubernetes for 
orchestration. Terraform 
for infrastructure 
administration 

Data localization 
(edge processing), 
diminished 
transmission for 
privacy, facilitation of 
federated learning, 
and cognizance of 
security 
vulnerabilities in 
open contexts. 

Round Trip Time 
(RTT), Median, and 
Standard Deviation 
under varying latency 
and device 
circumstances 
 

Affirmative; facilitates 
hybrid edge-cloud 
architecture, 
Kubernetes and 
Proxmox on Edge, 
containerized 
deployment, as well as 
integration of AI and 
federated learning. 
 

[30] NoSQL 
(Cassandra) 

Cassandra 
Query Language 
(CQL) 

TWCS, DTCS, 
compaction window size 
tweaking, column family 
modeling using TTL and 
static columns 

Fundamental 
deletion using 
tombstones, with no 
particular advanced 
security addressed. 

Latency (read/write), 
Throughput 
(ops/sec), Disk 
Space Usage 

Not defined; emphasis 
is on the performance 
of distributed NoSQL 
databases, excluding 
cloud integration. 

[31] Time-Series 
Database 
(Apache IoTDB) 

SQL-like 
(Extended with 
version-aware 
operators) 

VTSA: version reduction, 
operator pushdown, 
branch merging, selective 
updates, relational 
reducibility. 

Not explicitly 
mentioned; emphasis 
on query optimization 
and version control 
 

Latency, disk I/O, 
CPU use, and 
throughput (for 
various query types). 
 

Partially covers IoT 
deployment possibilities 
in edge devices and 
gateways, but not direct 
cloud interaction. 

[32] Actor-Oriented 
Database 
(AODB using 
Orleans 
Runtime) 

Declarative 
querying is 
constrained; 
access is 
facilitated using 
asynchronous 
actor techniques. 

Virtual Actors, In-memory 
processing, Favor local 
placement, Actors 
aggregate, Balancing 
actor granularity 
Workflow-based 
consistency 

Actor authentication 
and access control; 
state encapsulation 
and modular actor 
logic for protection 
 

Latency (including 
percentiles),Through
put (requests per 
second), Scalability 
(sensor quantity and 
server expansion), 
CPU utilization 

Indeed; cloud-based 
deployment with 
Amazon AWS facilitates 
scale-out through 
server silos, specifically 
engineered for SaaS 
applications. 

[33] Distributed 
NoSQL 
Database 
(Cloud-native) 

NoSQL queries; 
not expressly 
identified, maybe 
proprietary or 
standard 
NoSQL-like 
 

AI-driven dynamic data 
sharding utilizing 
machine learning 
(Random Forest), 
supervised learning with 
workload-based feature 
inputs, and real-time 
shard rebalancing. 
 

AI improves sharded 
database security by 
monitoring access 
patterns and 
detecting 
abnormalities  
- AI boosts 
performance and 
security. 
Anomaly prediction 
reduces data 
breaches and illegal 
access, supporting 
compliance. 

15.29% Query 
Latency Reduction 
(0.85s to 0.72s). 
- Throughput up 20% 
(50,000 to 60,000 
TPS). CPU utilization 
efficiency increased 
10% (75.6% to 
83.2%). Memory 
Usage: 12.8% lower 
(120GB to 104.6GB). 
IOPS rose 17.34%. 
Increased load 
balancing efficiency 
18.34%.Shard 
Rebalancing Time: 
46.88% Lower (3.2s 
to 1.7s). 

A cloud-native NoSQL 
distributed database 
cluster was used for 
experiments. 
The Cloud has 10 
nodes with 16 CPUs, 64 
GB RAM, and 2 TB 
storage. 
Cloud services and e-
commerce workloads 
employ TPC-C and 
YCSB benchmark 
datasets. 
 

[34] Blockchain-
based 
Distributed 
Ledger 
Technologies 
(Ethereum, 
Hyperledger, 
Multichain, etc.) 
 

Logic specialized 
to smart 
contracts; not a 
conventional 
query language 
 

Smart contracts for 
access regulation, 
permissioned 
blockchains for cost 
efficiency, anchoring 
mechanisms, hybrid on-
chain/off-chain storage, 
Directed Acyclic Graph 
(IOTA) 

PKI, DID, SSI, smart 
contract access 
control, behavior 
detection, secure 
firmware upgrades, 
and cryptographic 
assurances 
(immutability, data 
integrity) 

Latency, Throughput, 
Technical, 
Operational, 
Economic Feasibility 
Cost, security, 
scalability 
 

Partially employs edge 
devices and gateways 
as blockchain nodes, 
hybrid storage and 
computation models in 
cloud. 
 

[35] Implicitly 
inferred; 
presumes AI-
driven data 
storage and 
processing 
systems 

Not stated; 
emphasizes AI 
algorithm 
processing 
instead of 
querying 

Quantization, model 
compression, GPU/TPU, 
pipelining, parallel 
processing, distributed 
AI, edge computing, fog 
computing 

Distributed data 
integrity, blockchain, 
decentralized 
storage, PKI, and 
data preparation for 
quality and validity 

Latency, energy use, 
battery life, 
scalability, real-time 
responsiveness, AI 
execution efficiency 
 

For scalability and real-
time processing, edge, 
fog, distributed AI 
frameworks, and cloud 
platforms are used 
extensively. 

[36] Pluggable 
MQTT 
framework; 
bespoke IECC 
DMF (not 
DBMS) 
 

Custom data 
flow, no query 
language, 
plugin-based 
setup 
 

Modular plugin system, 
low-latency MQTT 
communication, 
differential privacy, 
energy status 
assessment, centralized 
configuration, visual 
management tools, real-
time monitoring 

TLS for secure 
MQTT connection, 
differential privacy 
plugin, traceability 
monitoring, 
adjustable access 
constraints, 
centralized security 
policy enforcement 
 

Battery life, latency, 
energy use, privacy 
Tradeoff, Real-Time 
Validation 
 

Yes; plugin-driven 
deployment, integrated 
IoT–Edge–Cloud 
support with MQTT 
brokers at each node, 
verified in real-world 
cloud and edge 
scenarios. 
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[37] Information-
Centric 
Network (ICN) 
– Named Data 
Networking 
(NDN) 

NDN-based 
interest-based 
data retrieval 
rather than a 
query language 
 

Lifetime classification, 
selective caching based 
on node location 
(edge/betweenness), 
avoiding short-lived data 
caching, betweenness 
centrality, ndnSIM 
simulation. 

Secure content 
naming and in-
network caching are 
ICN/NDN features 
not explicitly 
addressed. 
 

Cache Hit Ratio, 
Content Retrieval 
Delay, Data 
Freshness Effect, 
Consumer count 
Scalability 
 

Yes; edge/fog caching 
nodes, edge-proximity 
deployment schemes 
 

[38] Enterprise Data 
Warehouse 
(DW) and Data 
Lake (DL) 

SQL for Data 
Warehousing; 
schema-on-read 
and open 
formats (e.g., 
Hadoop, Spark) 
for Deep 
Learning 

DW: ETL, OLAP indexing, 
pre-aggregation (MOLAP, 
ROLAP); DL: schema-on-
read, ELT, scalable 
storage, compute-storage 
separation. 
 

DW: Strong access 
control, 
GDPR/HIPAA 
compliance; DL: 
Encryption, access 
control, network 
security, metadata 
governance 

DW: Query speed, 
latency, scalability, 
availability; DL: 
Ingestion speed, 
scalability, real-time 
processing, 
metadata 
discoverability. 

DW and DL enable 
cloud deployment, and 
DL offers configurable 
on-
premise/hybrid/cloud 
topologies with AWS, 
Azure, and Google 
BigLake. 
 

[39] Access Control 
System (CP-
ABE integrated) 
on blockchain 
 

Unstandardized 
query language; 
attribute-based 
encryption (CP-
ABE) logic. 
 

Bilinear pairing with DBDH 
for mutual authentication 
and key agreement, 
lightweight CP-ABE, 
efficient protocol 
architecture, public 
permissioned blockchain 
with PBFT. 
 

CP-ABE, secure data 
upload, session key, 
mutual 
authentication, data 
nonrepudiation, 
accountability, 
blockchain auditing, 
AVISPA/IND-CPA 
validation, ECC 
encryption, hash-
based ID protection 

Computation and 
Communication Cost 
(ms& bits), AVISPA 
security simulation, 
guessing/tracing/repl
ay/impersonation 
resilience 
 

Computation and 
Communication Cost 
(ms& bits), AVISPA 
security simulation, 
guessing/tracing/replay
/impersonation 
resilience 
 

[40] RFID, sensor 
streams, 
metadata 
storage, 
heterogeneous 
IoT data stores 
 

XML/XQuery, 
semi-structured 
query languages, 
and path 
expressions for 
hierarchical data 
 

Local indexing, 
hierarchical nomenclature 
(IANA, UUID), SOA-based 
service encapsulation, 
time-series aggregation, 
and the use of stream 
models 
 

Legislation on data 
protection (e.g. 
GDPR), encryption 
protocols, access 
control mechanisms, 
policy 
implementation, 
privacy 
classifications 

Scalability, Indexing 
Efficiency, Time-
Series Sampling 
Precision, 
Transaction 
Processing 
Robustness 
 

Indeed; distributed and 
mixed IoT 
architectures, edge 
data proprietorship, 
private/public network 
segmentation 
 

[41] Distributed 
Data Systems 
facilitating 
Digital Twins 
(including IoT 
sensors, 
fog/cloud 
databases) 
 

Inferred 
structured/unstru
ctured query 
usage in AI/BC 
contexts. 
 

Deep learning, prediction, 
orchestration, container-
based edge orchestration, 
SDN, Fog Computing, 
smart data techniques, 
real-time analytics, 
lifecycle-based DT design 
 

SDN-based closed-
loop security control, 
traceability, 
auditability, access 
policy enforcement, 
secure data 
provenance, 
blockchain-based 
immutable logs 

Fast Response, Data 
Provenance, 
Predictive Accuracy, 
Latency, Bandwidth 
Optimization, System 
Scalability 
 

Yes, robust Fog, Edge, 
and Cloud computing 
integration enabling 
Digital Twin 
synchronization and 
real-time feedback. 
 

[42] "Blockchain-
based Security 
Architecture 
(Hyperledger 
Fabric with 
IPFS for 
extended 
storage)" n 
 

"Cell for smart 
contract logic 
(excluding SQL 
or conventional 
queries)" 
 

“Off-chain storage utilizing 
IPFS, dynamic ECQV 
certificates, Schnorr zero-
knowledge proofs, fog 
computing-based smart 
contracts, distributed 
authentication, and elliptic 
curve cryptography” cell 
 

"Anonymity, 
unlinkability, mutual 
authentication, ECQV 
certificates, ECIES 
encryption, Schnorr 
ZKP, dynamic 
session key 
exchange, blockchain 
audit, resiience to 
replay/double-spend" 
cell 

"Blockchain Storage 
Utilization, Search 
Latency, End-to-End 
Latency (IoT–Fog–
Cloud), Certificate 
Activation Time, 
Batch Completion 
Time" cells 
 

"Yes; integrated with 
5G IoT, fog nodes, and 
cloud CSPs utilizing a 
decentralized 
architecture with smart 
contract execution at 
edge (fog) nodes." 
 

[43] Hybrid 
Architecture 
(IoT-Fog-
Cloud) 

Implied 
endorsement of 
ML/AI 
frameworks 

Dynamic resource 
allocation, load balancing, 
delay reduction, job 
scheduling 

Data anonymization, 
HMAC/OAuth 
authentication, 
AES/RSA encryption 

Latency, resource 
use, decision 
accuracy, energy 
efficiency, DSS 

Full Cloud and Fog 
computing capabilities 
with dynamic layer 
distribution 

[44] Industrial 
Cloud/Fog/Edg
e IoRT 
Systems 
 

Not expressly 
specified; 
incorporates 
ML/DL and 
simulation 
modeling 
frameworks. 

Task scheduling, digital 
twins, federated learning, 
swarm cooperation, 
predictive modeling 
 

Blockchain-based 
data integrity, 
semantic access 
control, failure 
checking 

Fast processing, 
accurate decisions, 
data scalability, 
resilience 
 

Strong cloud, edge, 
and fog computing 
support, offloading, and 
decentralization 
 

[45] ML-IDMS 
Intelligent 
Database 
Management 
System 
 

SQL with ML 
integration 
 

Initializing neural 
networks, selecting 
features, reducing 
dimensionality, decision 
modeling 
 

ML-enhanced cloud 
security, anomaly 
detection, encryption, 
semantic 
transformation 
 

Query execution 
(19.27s), storage 
efficiency (83.78%), 
correctness (90%), 
redundancy 
reduction (66.42%), 
throughput (7.93 
Gbps), latency (14.4 
ms). 

Cloud processing with 
Hadoop HDFS and 
real-time IoT support 
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This study compares IoT data management database solutions and 
architectures in a thorough table. It captures technological traits and 
capabilities that affect a database's IoT-specific performance. Six 
columns cover database system topics: Database Type & Name, 
Query Language, Optimization Techniques, Security Mechanisms, 
Performance Metrics, and Cloud/Edge Support.  
The first column, “Database Type & Name,” lists the database 
technology being studied and its name. This encompasses NoSQL, 
time-series, blockchain, and actor-oriented databases. This 
categorization of databases shows the range in data processing 
methodologies, which is necessary to match database capabilities 
with IoT demands. The second column, “Query Language,” is the 
main database interface. Others, especially those based on newer 
paradigms like actor-based models or blockchain, use asynchronous 
method calls or smart contract logic instead of SQL or MQL or CQL. 
Understanding the querying interface helps assess a database 
system's complexity, flexibility, and integration possibilities in IoT 
applications.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The final column, “Optimization Techniques,” describes database 
efficiency and scalability strategies. Time-series data compaction, 
compression, machine learning-based data sharding, and other 
performance-driven features may be used. Optimization is essential 
for handling big, high-velocity data in IoT use cases while retaining 
performance and dependability. The fourth column, “Security 
Mechanisms,” explains each system's privacy and protection 
procedures. These include encryption standards (e.g., AES, RSA), 
authentication methods, identity management systems like CP-ABE, 
and pseudonyms. Such security techniques protect data during 
transmission, storage, and access in IoT environments, where data 
sensitivity and user privacy are important.  The fifth column, 
“Performance Metrics,” lists system performance benchmarks. 
Latency, throughput, CPU, memory, storage efficiency, and reaction 
times are measurements. This data lets database systems be 
compared under different operating circumstances to see whether 
platforms can fulfill IoT deployments' real-time and resource-
constrained needs. The last column, “Cloud/Edge Support,” evaluates 
each system's cloud and edge computing compatibility. It checks if 

[46] Dynamic 
Indexing 
Framework for 
Internet of 
Things 
Streaming Data 
 

Timestamp-
based queries 
utilizing a 
bespoke index 
structure, 
combined with 
key-value pairs. 

Windowed floating-point 
compression, bit-
padding, Huffman 
encoding, delta 
encoding, and zigzag 
encoding 
 

Not specifically 
stated; focus on data 
integrity and 
deduplication 
 

Compression ratio 
(2.12%), storage 
efficiency (97.88%), 
processing duration 
(real-time capabilities 
for <25200 records) 
 

Facilitates streaming 
and real-time data 
integration from many 
IoT sources with Apache 
Kafka. 

[47] Internet of 
Things-Driven 
Health Data 
Ecosystem (no 
particular 
database 
name) 

Not specifically 
delineated; 
employs sensor-
driven real-time 
data streams 
and cloud 
interfaces. 

Data compression, 
aggregation, and 
reduction; hybrid 
processing at the edge, 
fog, and cloud; machine 
learning-driven decision 
support. 

Encryption, access 
control, anomaly 
detection, and 
blockchain 
integration for 
integrity. 
 

Scalability, latency, 
decision-making 
accuracy, resource 
efficiency, patient 
outcomes 
 

Facilitates edge 
computing, fog nodes, 
and cloud systems by 
adaptive data offloading. 
 

[48] Hadoop, 
Apache Spark 
are cloud-
based 
distributed 
systems. 
 

JSON over 
REST API, 
Spark SQL, 
Python 

Computing on a cluster in 
memory, MapReduce, 
parallel processing with 
Spark, and RESTful 
design for node updates 
 

Observations on 
cloud vulnerabilities 
and provider-
managed security 
are included, 
although not in great 
detail. 

Efficiency in batch 
processing, fault 
tolerance, horizontal 
scalability, and 
speed (real-time 
stream processing) 
are all important. 

Strong cloud computing 
focus (SaaS, PaaS, and 
IaaS); no edge 
computing 
characteristics stated. 
 

[49] IoRT-based 
Cyber-Physical 
Systems with 
Cloud, Fog, 
and Edge 
Support 
 

Not specifically 
mentioned; 
refers to 
simulation tools, 
visual data, 
digital twins, and 
machine learning 
interfaces 

Swarm intelligence, 
federated learning, 
sensor fusion, real-time 
monitoring, spatial 
computing, and digital 
twin modeling. 
 

Blockchain, 
contextualized 
control, semantic 
technologies, 
ambient intelligence, 
and decentralized 
coordination 
 

Scalability, real-time 
data accuracy, 
decision-making 
speed, routing 
efficiency, energy 
efficiency, job 
execution precision 
 

Fully integrated edge, 
fog, and cloud 
computing for 
collaborative robotics 
and real-time IoRT data 
sharing 
 

[50] ML-IDMS 
Intelligent 
Database 
Managemen
t System 
 

 

SQL with ML 
integration 
 

Structured Query 
Language (SQL); 
extended with ML 
integration 

Structured Query 
Language (SQL); 
extended with 
ML integration 

 

Initializing 
neural 
networks, 
selecting 
features, 
reducing 
dimensionality, 
decision 
modeling 
 

 

ML-
enhanced 
cloud 
security, 
anomaly 
detection, 
encryption, 
semantic 
transformati
on 

 

Query execution (19.27s), 
storage efficiency 
(83.78%), correctness 
(90%), redundancy 
reduction (66.42%), 
throughput (7.93 Gbps), 
latency (14.4 ms). 
 

 

Cloud processing with 
Hadoop HDFS and real-
time IoT support 
 

[51] Smart 
greenhouse 
management 
with IoT 
 

Protocols: 
MQTT, REST, 
DDS, XMPP, 
ZigBee; no SQL. 
 

Predictive analytics, 
LPWAN/LoRaWAN, MAC 
algorithms, AI/ML 
decision assistance, 
fog/cloud/edge synergy, 
energy load shaping, 
digital twins 
 

Limited detail on 
interoperability, 
structural monitoring, 
secure IoT protocols, 
data integrity 
standards. 
 

Up to 43% energy 
savings, $500/acre 
cost savings, data 
transfer speed, 
sensor accuracy, 
greenhouse 
microclimate 
management 
 

A cloud-based DSS 
supports edge 
computing, cloud and 
fog integration, low-
power WANs, 
GPS/LEO/5G 
infrastructure, and 
structural health 
monitoring. 
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the database supports distributed deployments, containerized 
implementations (Kubernetes or Docker), and network edge real-time 
processing. IoT systems depend on edge computing to reduce 
latency, bandwidth usage, and data processing responsiveness.  
These six columns provide a holistic overview of IoT database 
technologies, helping readers understand how different solutions 
meet current data-driven environments' technical, performance, and 
security concerns.  
 

RECOMMENDATIONS 
 
1. Adopt Hybrid Edge–Fog–Cloud Architectures 

Organizations should incorporate hybrid computing architectures 
to optimize real-time processing and minimize latency. The 
scalability, backup, and sophisticated analytics capabilities of the 
cloud and fog layers complement the edge nodes' capacity to 
process time-sensitive data in real-time. Using this tiered 
approach improves system responsiveness and resource usage, 
which is particularly useful for Internet of Things applications that 
deal with high-frequency data streams. 
 

2. Leverage AI and Machine Learning for Intelligent Data 
Handling 
Employ machine learning methods, including anomaly detection, 
predictive modeling, and dynamic sharding, to improve 
transactional integrity and automate data management. These 
models enhance data quality, optimize storage, and provide 
adaptive responses to evolving data patterns. 
 

3. Utilize Distributed NoSQL Databases for Scalability 
NoSQL systems such as MongoDB, Cassandra, and Redis are 
more adept than conventional RDBMS at managing diverse and 
high-volume IoT data. Their schema-less architecture and 
horizontal scalability meet the performance demands of 
contemporary IoT ecosystems, particularly when integrated with 
containerized deployments and orchestration platforms such as 
Kubernetes. 
 

4. Implement Privacy-Preserving and Secure Frameworks 
To adhere to data protection standards like GDPR, IoT devices 
must incorporate privacy-preserving identifiers, blockchain-
based access restrictions, and encrypted communication 
protocols. Integrating differential privacy and decentralized 
identity frameworks will enhance user confidence and data 
security. 
 

5. Optimize Time-Series and Streaming Data Handling 
Prioritize data indexing, compression, and selective caching for 
the optimal handling of IoT-generated time-series data. Utilizing 
models like VTSA (Versioned Time-Series Algebra) and TSBPS 
(Temporal-Spatial Block Partitioning Strategy) can markedly 
improve retrieval velocity and storage efficacy. 
 

6. Standardize Interoperability and Semantic Data Models 
To facilitate seamless data transmission and integration among 
various IoT systems, it is advisable to use standardized data 
formats, query interfaces, and semantic ontologies. This 
promotes interoperability and lowers complexity in extensive, 
diverse IoT implementations. 
 

7. Promote Research on Lightweight and Energy-Efficient 
Solutions 
Considering the constrained resources of numerous IoT edge 
devices, forthcoming advancements should prioritize lightweight 
algorithms, energy-efficient indexing systems, and model 
compression methodologies. Research should further investigate 
adaptive resource management to equilibrate performance and 
energy usage. 

8. Enhance Integration with Business Intelligence Tools 
Predictive, automated, and real-time decision-making is made 
possible by bridging Internet of Things platforms with powerful 
business intelligence systems. Business intelligence frameworks 
that use artificial intelligence and big data analytics can assist 
firms in gaining deeper insights and strategic benefits. 
 

CONCLUSION 
 
The findings of this research have shown that in order to effectively 
handle data from the Internet of Things (IoT), database systems that 
are capable of exceeding the capabilities of standard relational 
models are required. It is clear that current solutions are increasingly 
suited for the real-time, scalable, and diverse nature of Internet of 
Things settings. This is visible via a systematic comparison of 
advanced database designs, which includes NoSQL, time-series, 
actor-oriented, and block chain-based systems. Under high-
concurrency situations, performance may be considerably improved 
by utilizing optimization techniques such as sharding that is driven by 
machine learning, indexing that is based on streaming, and 
compression algorithms. Encryption, attribute-based access control, 
and blockchain auditing are some of the sophisticated security 
measures that may be integrated into the Internet of Things (IoT) to 
ensure the protection and integrity of critical data. When it comes to 
lowering latency and allowing localized data processing, the capability 
of these systems to function across cloud, fog, and edge 
infrastructures is very necessary. All things considered, the 
comparative insights that are presented in this article serve a helpful 
reference for selecting and creating database systems that are in 
accordance with the particular requirements of Internet of Things 
applications. Future research should investigate lightweight, energy-
efficient database solutions that seamlessly incorporate artificial 
intelligence, edge computing, and privacy-preserving strategies in 
order to satisfy the expanding demands of smart, connected settings. 
This is because infrastructures for the Internet of Things (IoT) 
continue to develop in both complexity and size. 
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