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ABSTRACT 
 

Constraints are widely used in photogrammetric studies such as introduction of constraints on interior orientation parameters, exterior orientation paramours and 
object space coordinates of control points. The value of applied constraint lies in the ability to utilize the information to the greatest extends in reducing the 
magnitude of error propagations. This paper emphasises on deriving mathematical models based on using control distances constraint, which implies that each 
two points in the photogrammetric model should be constrained to a known distance, for simultaneous and self calibration block adjustments. Software's utilizing 
the derived mathematical models have been developed and tested using mathematical and actual photogrammetric data. The effects of block size, number and 
location of control distances, camera lens distortion and the random errors on bundle and self calibration block adjustments using the derived mathematical 
models and the conventional methods have been studied using simulated photogrammetric data. It was found that adding the control distances as constraint 
improves the accuracy of the adjustment. 
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INTRODUCTION 
 
Problems in photogrammetry can be solved mainly by pure 
mathematical modelling using simple but highly precise coordinates 
of image points where the instrumentation for measuring these 
coordinates is conceptually very simple. This method of solution is 
called analytical photogrammetry. It is universally recognized for 
having the inherent capability of non-contact and rapid spatial 
measurements. Broadly speaking, there are two different methods of 
analytical block adjustment: sequential and simultaneous (bundle). In 
sequential method, the triangulation is performed in steps analogous 
to the instrumental method of triangulation [Moffitt and Mikhail, 1980]. 
The mathematical approaches to the sequential method are, 
generally, categorized according to the relative or absolute orientation 
methods employed (e.g. collinearity, coplanarity, scale-restraint 
conditions) and the method employed for strip or block adjustment 
(e.g. linear, second- or third-degree polynomial equations, iterative 
with number of equations, etc.). In the simultaneous method, the 
block triangulation and adjustment are performed in one step. The 
desired parameters are adjusted as a result of one simultaneous least 
squares adjustment of the m photographs (strip or block) by a direct 
or iterative method. The process is also known as the Bundle Block 
adjustment or simply Bundle adjustment. The sequential adjustment 
is advantageous from computational point of view, but its general 
implication fails to incorporate the full mathematical foundation of a 
simultaneous adjustment which yields more accurate results [El-
Ashmawy, 1999] and also lends itself to statistical assessment with 
respect to a posteriori precision evaluation and gross errors detection 
[El-Ashmawy, 1999]. Bundle (block) adjustment may be viewed as 
the very apex of analytical photogrammetry, by which a variety of 
problems in the applications of aerial and close range 
photogrammetry can be solved. Bundle adjustment utilizes the well 
known collinearity equations, or co planarity condition [El-Ashmawy, 
2021], to establish two equations for each measured image point, and 
provides a unique solution for the system of observation equations by  
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the least squares method. The collinearity equations can be written  
as:  
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Where: 

px , py          are the measured photo coordinates of 

image point p; 
,  o ox y   are the photo coordinates of the principal point; 

 f is the camera focal length; 
,  ,  o o oX Y Z  are the object space coordinates of the 

camera station; 
,  ,  P P PX Y Z  are the object space coordinates of the 

object point P;  

11 33,  ..., m m  are the elements of photo orientation matrix 

[Ghosh, 2005]; 
2 2 2

p p pr x y   
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                                                          (3) 
= function of symmetrical radial lens distortion; 

2 4
3 4( ) 1 .....p pF P P r P r       

                                             (4) 
= function of symmetrical radial lens distortion; and 

Where 1 2,P P  are correction coefficients for 

decentering lens distortion. 



 
Equation (1) has three sets of parameters as follows: 
 

 camera interior orientation and lens distortion parameters, 
 camera exterior orientation parameters, and 
 object space coordinates of points. 

 
Based on the above mentioned parameters, two methods of block 
adjustment as follows, different in their principles, will arise: 
 
CASE A: when camera interior orientation and lens distortion 

parameters are known, the block adjustment is called 
simultaneous, or bundle, block adjustment. 

CASE B: when camera interior orientation and lens distortion 
parameters are not known, the block adjustment is called self 
calibration block adjustment. 

 
In some cases, however, some known parameters are hidden and 
may be computationally derivable, whereas in others, some 
parameters may be known with unequal reliability and it may be 
advisable to use the known parameters directly or indirectly in the 
adjustment procedure. The concept of self calibration addresses itself 
to the former cases, while the utilization of constraints is applicable to 
the latter cases. Such constraints are meant to enforce the 
measuring-adjusting process to conform to some functional or 
geometric relationships or to conform to the degree of reliability as 
defined by “weighting”. The value of such considerations lies in the 
ability to utilize the information to the greatest extend in reducing the 
number of unknowns or in reducing the magnitude of error 
propagations [Mikhail, 1976]. Constraints are widely used in 
photogrammetric studies such as introduction of constraints on 
interior orientation parameters [Ghosh, 2005], exterior orientation 
parameters [Ghosh, 2005], [Wang, 2004] and object space 
coordinates of control points [Delar et al., 2004], [El-Ashmawy, 2018], 
[El-Ashmawy, 2021], [El-Ashmawy, 1999], [Ghosh, 2005], [Orun and 
Natarajan, 1994], [Sarjakoski,1984]. The available literature review 
has, only, one application of control distances constraint [El-
Ashmawy, 2018] for block adjustment to determine the relative, not 
absolute, three dimensional (3D) coordinates of points. This 
application may be suitable for some close range photogrammetric 
applications but absolutely unsuitable for topographic applications. 
 
Aims of the paper are: 
 

 Derivation of mathematical models based on introduction of 
constraints on control distances to block adjustment for 
topographic applications; 

 Investigation of the accuracy of the derived mathematical 
models; and 

 Comparing the results of the derived mathematical models 
and conventional methods for block adjustment. 

 

Derivation Of The Mathematical Models 
 
The developed mathematical models utilize the collinearity equations 
to establish two equations for each measured image point, and 
provide unique solution for the system of observation equations by 
the least squares method.  
 
In Equation (1), the observations are the left and right photo 
coordinates of an object point. The linearized form of Equation (1), for 
least squares solution, can be given as follows: 
 

.V B          
                               (5) 
 
where: 

  is the correction vector to the current values set for 
the unknowns (the camera exterior orientation 
parameters and object space coordinates of the new 
points for simultaneous block adjustment, or the 
camera interior orientation parameters, the camera 
exterior orientation parameters and object space 
coordinates of the new points for self calibration block 
adjustment)  in the iterative solution; 

B  is the matrix of the partial derivatives of Equation (1) 
with respect to the unknowns; 

V   is the residual vector, i.e., the correction vector to the 
observations; and 

    is the discrepancy vector.  
 
Introducing constraints to the mathematical models 
 
Constraints are suggested to consider supplemental observation 
equations [Ghosh, 2005], [Mikhail, 1976] arising from a priori 
knowledge regarding the object space coordinates of the control 
points and control distances. 
 
Constraint for control points 
 
Constraint for control points can be written as follows: 
 

c c cV         
                               (6) 
 

where: 
c  is the vector of observational corrections to the object 

space coordinates of the control points; and 
c  is the discrepancy vector, between observed values 

and current (in iterative solution) values of the object 
space coordinates of the control points. 

 
Constraint for control distances 
 
Supplemental observation equations for control distances can be 
derived as described below [El-Ashmawy, 2018]. 
The distance condition [GHILANI and WOLF, 2017] between two 
points P and Q can be written as: 
 

2 2 2( ) ( ) ( )
m PQPQ S Q P Q P Q PS V X X Y Y Z Z        

                              (7) 
 
Where: 

mPQS
   is the measured distance in object 

space system between points P and Q; 

PQSV
    is the corresponding residual; and 

,.....,P QX Z   are the object space coordinates of 

points P and Q respectively. 
 
The liberalized form of Equation (7) can be written as: 
 

.S S S SV B          

                               (8) 
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In which: 

SV  is the residual vector, i.e., the correction vector to the 

measured distances; 

S  is the correction vector to the current values set for 

the unknowns (the object space coordinates of the 
two ending points of the measured distance) in the 
iterative solution; 

SB   is the matrix of the partial derivatives of Equation (7) 

with respect to the unknowns and its elements can be 
found in [GHILANI and WOLF, 2017]; and 

S  is the discrepancy vector.  
 

Control distances and their weights can be determined by: 
 

 field measurements followed by computing the weights from 
observations; or 

 computing each distance using the known object space 
coordinates of the two ending points using Equation (7) and 
computing its standard deviation, and hence weight, using the 
theory of error propagation [GHILANI and WOLF, 2017]. 

 
The observation equations 
 

Observation equations can be obtained by merging Equations (5), (6) 
and (8) as: 
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Equation (9) can be rewritten as: 
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                             (10) 
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The principle of the least squares method requires the minimizing of 

the quadratic form . .tV W V , where W is the weight matrix whose 
elements are the weights associated with each of the observations. 
The least squares solution of an equation similar to Equation (10) to 
compute the values of   and the necessary statistical data is 
available in [El-Ashmawy, 1999]. 
 

Developing The Necessary Software 
 

The current research includes the development of two software's and 
their main tasks are tabulated in Table 1. 
 

Table 1.  The Developed Software's & Their Main Tasks 
 

SOFTWARE MAIN TASK 

Col_Dis_Con_Consts Simultaneous block adjustment using distances 
and control points constraints 

Col_Cal_ 
Dis_Con_Consts 

Self calibration block adjustment using distances 
and control points constraints 

 

These software's provide an access to major computational phases of 
analytical block triangulation. The main functions of the developed 
software's are: 
 

 Data preparation: It performs the necessary tasks for 
preparing the data to start block adjustment [El-Ashmawy, 
1999].  

 Iterative least squares solution for performing the specified 
task as shown in Table 1. This includes the computations of 
the adjusted values of unknowns, depending on the specified 
task, residuals of photo and object space coordinates of 
control points, if any, and variance of unit weight. 

 Computation of statistical data: It includes the computation of 
the necessary data for statistical analysis and error detection 
[El-Ashmawy, 1999] such as variance of unit weight, cofactor 
and covariance matrices for unknowns, depending on the 
specified task, adjusted photo coordinates and their cofactor 
matrix, residuals of  photo coordinates, dimensions of error 
ellipses, etc.  

 

The software's utilise efficient techniques of Data Structuring [Malik, 
2010], Random File Access and Dynamic Memory Allocations 
[Gregory, 1998] for automatic processing and representation of the 
data and results. The software's are window-driven type for facilitating 
its execution to the user [Gregory, 1998]. 
 

Software's For Testing The Results Of The 
Derived Mathematical Models 
 

For comparing the accuracy of the results of the derived 
mathematical models and the conventional methods, the following 
software's, Table 2, are used in this research. 
 

Table 2.  Software's for comparing the results of the derived 
mathematical models 

 
SOFTWARE MAIN TASK 

PHOTOMAP[El-Ashmawy, 
1999] 

Simultaneous block adjustment with control 
points  constraints 

Col_Cal_Consts [El-Ashmawy, 
2021] 

Self calibration block adjustment with 
control points constraints 

 
EFFECTS OF ERRORS ON THE ACCURACY OF ADJUSTMENT 
 
The mathematical photogrammetric data can be advantageously 
used for testing of photogrammetric methodologies and systems 
since in this case error free input data and end results are both known 
[El-Ashmawy, 2018],[El-Ashmawy, 2018],[El-Ashmawy, 2021],[El-
Ashmawy, 1999]. MATHP software [El-Ashmawy, 1999] has been 
used for generating the necessary mathematical blocks of 
photographs. 
 

The present work concentrates on studying the effect of the random 
and lens distortion errors on the results of block adjustment. 
 
Effect of the random errors 
 

The effect of the random errors was tested by numerical simulation as 
following: 
 

 Generating error free photogrammetric data of blocks of 
different sizes using MATHP software. 

 Generating normally distributed error(s) with arbitrary mean(s) 
and standard deviation(s) as presented in [El-Ashmawy, 
2021]. The obtained errors were then applied to the error free 

International Journal of Innovation Scientific Research and Review, Vol. 03, Issue 03, pp.948-953, March, 2021                                                                                             950 



photo coordinates and ground coordinates of control points of 
the generated blocks. 

 The distances and their standard deviations were computed 
using Equations (7) and (9) as explained earlier. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Finally, simultaneous block adjustments with/without adding 
control distances constraint were performed to adjust the 
available blocks and the results, in the form of standard 
deviation of unit weight ( ˆ

o ), Root Mean Square Error 

(RMSE) and Maximum Absolute Error (MAE) values at all 
distances and ground coordinates of points, were obtained 
and tabulated in Table 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Effect of random and lens distortion errors 

Table 4. Results of Simultaneous block adjustment (case of random errors only) 
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Model 
1Strip 
2Strip 
3Strip 
4Strip 
5Strip 

0.97 
1.09 
1.05 
1.12 
1.09 
1.07 

5.900 
5.700 
4.000 
4.100 
3.800 
3.700 

20.612 
19.181 
15.735 
22.082 
19.190 
17.141 

3.648 
4.184 
2.593 
2.420 
2.361 
2.264 

08.520 
10.971 
07.032 
06.787 
08.306 
07.710 

4.392 
4.210 
3.087 
2.992 
2.565 
2.328 

09.842 
10.397 
08.870 
16.091 
11.852 
11.455 

6.649 
6.185 
5.028 
5.051 
4.040 
4.687 

13.420 
16.485 
18.948 
18.371 
15.214 
18.856 

C
on

tr
ol
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Model 
1Strip 
2Strip 
3Strip 
4Strip 
5Strip 

0.93 
1.04 
1.00 
1.03 
1.01 
0.98 

6.900 
6.200 
4.400 
4.600 
4.300 
4.200 

24.396 
22.408 
17.682 
25.761 
23.196 
19.026 

3.824 
4.213 
2.655 
2.216 
2.367 
2.287 

08.906 
12.169 
07.158 
06.827 
09.202 
07.786 

4.544 
4.228 
3.224 
3.097 
2.701 
2.775 

10.512 
10.493 
09.723 
17.263 
12.723 
11.634 

6.770 
6.383 
5.118 
5.212 
4.266 
4.767 

14.013 
17.320 
19.696 
18.893 
17.172 
21.534 

 

* Values in m  at Photo Scale 1:1 
 

From Table 4, the following conclusions can be obtained: 
 

 The derived mathematical models are suitable for simultaneous block adjustment for a block of photographs of any size. 
 There is no significant difference between the a posterior standard deviation ( ) and the a priori standard deviation ( =1.0) and 

hence that the correct simulation assumptions and block adjustment have been achieved. 
 Adding control distances constraints has significant effect on improving the accuracy and reducing the MAE values of the 

obtained results. 
 

Effect of the lens distortion errors 
 

As has been mentioned, lens distortion consists of two components: symmetric lens distortion (Equation (3)) and asymmetric lens 
distortion (Equation (4)). The lens distortion errors were introduced to the blocks of mathematical photographs as follows: 

 Generating error free photogrammetric data of blocks of different sizes using MATHP software. 
 Assigning values for the lens distortion coefficients and generating errors in the range of 50 m using Equations (3) and (4). 

 Adding the generated errors to the error free photo coordinates 
 Computing the distances and their standard deviations as explained earlier. 

 
The results of self calibration block adjustments are shown in Table 5. 
 

Table 5. Results of self calibration block adjustment (case of lens distortion errors) 
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Model 
1Strip 
2Strip 
3Strip 
4Strip 
5Strip 

0.100 
0.000 
0.000 
0.000 
0.000 
0.000 

0.170 
0.098 
0.116 
0.107 
0.110 
0.108 

0.035 
0.023 
0.021 
0.018 
0.017 
0.018 

0.083 
0.070 
0.068 
0.067 
0.066 
0.067 

0.042 
0.023 
0.021 
0.020 
0.018 
0.018 

0.129 
0.052 
0.057 
0.064 
0.070 
0.065 

0.069 
0.039 
0.038 
0.036 
0.036 
0.036 

0.162 
0.104 
0.117 
0.105 
0.111 
0.119 
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Model 
1Strip 
2Strip 
3Strip 
4Strip 
5Strip 

0.100 
0.000 
0.000 
0.000 
0.000 
0.000 

0.182 
0.101 
0.123 
0.117 
0.113 
0.111 

0.037 
0.025 
0.022 
0.020 
0.019 
0.020 

0.089 
0.072 
0.068 
0.068 
0.066 
0.067 

0.044 
0.025 
0.023 
0.022 
0.020 
0.019 

0.137 
0.055 
0.060 
0.075 
0.071 
0.067 

0.071 
0.042 
0.040 
0.038 
0.038 
0.038 

0.167 
0.114 
0.120 
0.117 
0.117 
0.127 

 

* Values in m  at Photo Scale 1:1 
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In this case, error free photogrammetric data of blocks of different 
sizes using MATHP software were generated, and random and lens 
distortion errors were generated and applied to the error free photo 
coordinates and ground coordinates of control points of the generated 
blocks as explained earlier.  
Table 6 illustrates the results of self calibration block adjustments, for 
this case. 
 

From Tables 5 and 6 the following conclusions can be drawn: 
 

 The derived mathematical models are suitable for self 
calibration block adjustment for a block of photographs of any 
size. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Testing The Derived Mathematical Model For 
Control Points Extension 
 
The derived mathematical model has been tested for control points 
extension. The used actual photogrammetric data [El-Ashmawy, 
1999] consists of a pair of stereo photographs taken by Wild Avioplot 
RC10 Automatic Camera System of Echallens of wide angle 

coverage on a 23 23 cm format at 620m height with focal length 
153.18mm lens. The average photo scale is about 1:4300. The 
camera calibration data e.g. calibrated focal lens, calibrated fiducial 
marks and radial lens distortion are available [El-Ashmawy, 1999]. 
The measurement of image points coordinates was carried out [El-
Ashmawy, 1999] on the stereo comparator of Aviolyt BC2, Leica, 
Switzerland, having a least count of 1 m . The area contains 16 

well-distributed and identified control points. The control point 
numbers, ground coordinates and standard errors are also available. 
Studying the accuracy of the control extension was performed by 
using three different patterns of control points [El-Ashmawy, 1999]. 
The objectives of using different control point patterns were: 
 

 Determination of the effect of control points number and 
location on the accuracy of the generated control points 
(check points), and 

 Comparison between the results of simultaneous and self 
calibration block adjustments. 

 
 
 
 

 Lens distortion errors have significant effect on the accuracy 
of block adjustment especially for Z-coordinates 
determination. Control distances constraint compensates the 
lens distortion errors slightly better than without using it. This 
opens the door to use this type of constraint for camera 
calibration methods. 

 Adding control distances constraint improves the accuracy of 
the obtained results. It has significant effect on reducing the 
values of MAE especially for the distances and Z-coordinates 
determinations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

The block adjustment was performed as follows: 
 

 Simultaneous block adjustment using control points, and 
control points and distances as constraints. For simultaneous 
block adjustment, the available camera calibration data was 
introduced to the adjustment. 

 Self calibration block adjustment using control points, and 
control points and distances as constraints. 

 Tabulating the final results in the form of RMSE and MAE 
values for all distances and ground coordinates as depicted in 
Table 7. 

 
From Table 7, the following conclusion can be drawn: 
 

 Increasing the number of control points improves the obtained 
accuracy;  

 Self calibration block adjustment method improves, for the 
used data, the results of block adjustment; and 

 The results of the proposed method are comparable or better 
than the results of the conventional methods which use only 
control points as constraint. 

 
 
 
 
 
 

Table 6. Results of self calibration block adjustment (case of random and lens distortion errors) 
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1Strip 
2Strip 
3Strip 
4Strip 
5Strip 

1.02 
1.05 
1.06 
1.12 
1.09 
1.07 

4.700 
6.300 
4.000 
4.100 
3.600 
3.600 

14.777 
22.973 
16.095 
22.087 
19.097 
16.479 

3.225 
4.560 
2.632 
2.223 
2.415 
2.258 

08.122 
13.067 
07.660 
06.534 
07.940 
06.812 

3.357 
4.353 
3.135 
2.994 
2.569 
2.333 

06.792 
12.326 
09.391 
16.158 
12.087 
11.631 

6.785 
6.913 
5.470 
5.169 
4.138 
5.045 

16.810 
19.469 
21.898 
17.684 
14.907 
18.285 
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Model 
1Strip 
2Strip 
3Strip 
4Strip 
5Strip 

0.98 
1.00 
1.00 
1.04 
1.01 
0.98 

5.100 
6.500 
4.000 
4.200 
3.800 
3.800 

16.096 
24.719 
17.962 
23.155 
21.064 
17.670 

3.458 
4.697 
2.529 
2.197 
2.419 
2.275 

08.802 
15.075 
07.862 
06.324 
08.991 
06.766 

3.527 
4.510 
3.282 
3.110 
2.680 
2.466 

07.643 
13.364 
09.998 
17.608 
13.118 
11.817 

7.466 
7.251 
5.725 
5.354 
4.425 
5.133 

18.270 
21.834 
23.546 
18.756 
17.088 
19.814 

 

*Values in m at Photo Scale 1:1 
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Conclusions & Recommendations 
 
 Using control distances constraint is applicable to simultaneous 

and self calibration block adjustment for blocks of photographs 
of any size. 

 Adding control distances constraint compensates the lens 
distortion errors slightly better than without using it. 

 Using control distances constraint slightly improves the 
accuracy of the results of simultaneous and self calibration 
block adjustment. 

 This paper shows the necessity for the mathematical 
photogrammetric data for testing the photogrammetric methods 
and software's 
. 

It is recommended to study the effect control distances constraint on 
camera calibration techniques. 
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