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ABSTRACT 
 

The limit definition, or the ϵ-δ definition, as it has come down to us through two centuries, is still beset by suspicion from critics, being questioned for its level of 
rigor. The issue seems to stem from the precision of its statement and the logical soundness of its expression. There have been some questions on the 
soundness of its arguments in the midst of infinity and have called for a more ‘discrete’ approach. There have been arguments which say that the formal 
definition is invalid because ‘infinity does not exist’. The aim of this paper is to show that, at least within the framework of mathematical analysis and the tenets of 
mathematical logic, the ϵ-δ definition is logically sound, and its level of precision has not been eroded by years of practice and advancement in the field, and in 
fact still serves as a spring board for further analytical studies. 
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INTRODUCTION 
 

Lately I have been a witness to an online debate questioning the rigor 
of Cauchy’s definition of the limit of a function at � = ��One party to 
the debate was contending that the definition of the limit of a function 
as given by the French mathematician A.L. Cauchy (1789 – 1857) 
was inadequate not only in terms of establishing the value of the limit, 
but also in establishing the soundness of the proof as provided by the 
ϵ-δ definition. The ‘debate’ had become heated and as the exercise 
ensued the ‘against’ party started to get personal and began to throw 
language which was considered ‘below the belt’.  I will not name the 
parties involved, since I wanted to focus more on the subject of their 
debate, and on the merits of the opposite claims.  The reader might 
as well be forewarned that our topic is not a new one, and my 
audience is definitely not the professional analysts who have been 
practicing their trade at the highest levels for the longest time.  Such 
people not only have the highest appreciation of the details and 
ramifications of the concept of limits but are already quite comfortable 
in arriving at the deepest results brought about by the application of 
the formal definition.  Rather, the hope is that by a sufficient 
examination of some of the consequences of the Cauchy definition, 
the curious student of analysis would be encouraged to further 
consider the subject after reading the article and therefore be a 
source of greater insight. 
 

What was Cauchy thinking? 
 

In his seminal work entitled Cours D’analyse (1821), Cauchy didn’t 
give the actualϵ − δ definition of limit, but he hinted at something 
equivalent when he tried to define what a continuous function is: 
 

“…, the function f(x) is a continuous function of x between the 
assigned limits if, for each value of x between these limits, the 

numerical value of the differencef(x + α) – f(x) decreases 
indefinitely with the numerical value of alpha. In other words, 
the functionf(x) is continuous with respect to x between the 
given limits if, between these limits, an infinitely small 
increment in the variable always produces an infinitely small 
increment in the function itself.” [1] 
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This verbal formulation didn’t exactly look like the � − � definition 
that we know in modern times, but what is important is the fact that 
Cauchy was able to switch from verbal statements to expressions that 
involved mathematical inequalities when his proofs required him to do 
so [2].  Cauchy’s appreciation of the elements was already deep, and 
reading through the proofs of some of his results clearly showed that 
he dispensed with the formal language of limits due to his command 
of the concept.  From his perspective this amount of rigor was enough 
for him to be able to reach some of the deep and important results he 
was able to reach in his textbook. 
 

We are not here to expound on the history behind the concept of the 
mathematical limit.  What is important to us at this point is the fact 
that the origin of the rigor of limits reached its precise prototype in the 
work of Cauchy in Cours D’analyse, and every attempt after this was 
just an attempt to give it more mathematical formalism, the way we 
know it today. So, what is this modern formalism?  It might be 
worthwhile to refresh our memory with the formal definition of the limit 
of a function.  The function f(x) is said to have the limit � as � 
approaches �, symbolized by lim�→� �(�) = �, if given any 
number � > 0 we can find a number � > 0 such that |�(�) − �| <
� whenever 0 < |� − �| < �[3]. In symbolic shorthand, the whole 
statement can be represented as  
 

lim�→� �(�) = � ⇔ ∀� > 0 ∃� > 0 ∋ ∀ 0 < |� − �| < � ⇒
|�(�) − �| < �. 
 
So,what is the issue? 
 
When it comes to the limit of functions, modern pedagogy normally 
concentrates on applying the definition of the limit to particular 
examples where operations are normally “automatic”.  Automatic in 
the sense that, the candidate for the limit value of the function as x 
approaches some value�is often predictableand could be obtained by 
substituting the value � =  �into the function. The next step is then 
to formally verify that it is indeed the limit as x approaches � by a 
direct use of the ϵ-δ definition.  There is an argument, however, which 
says that the initial step of “guessing” the limit value in the preceding 
procedure involves the a priori presumption of a limit whose value is 
to be expected to satisfy the definition, and thus no longer becomes a 
cause for any surprise, making the entire argument circular .In other 
words, there is a perspective that poses the question as to how the 



ϵ − δ definition of the limit avoids circularity and maintains the 
independence of possible candidates for the limit value.  This strikes 
at the heart of proof methodology in mathematical analysis, which 
relies on the principles of existence and uniqueness of objects, one of 
which is the limit.  It is quite easy to use the formal definition to prove 
that a value is a limit of a function if one is confident enough that 
indeed such value is the limit.  For example, it can easily be shown 
that the number  8 (= 2�) is the limit of the function �(�) =  �� by 
using the formal definition: 
 

To show: 
 

lim
�→�

�� = 8 ⇔ ∀� > 0 ∃� > 0 ∋ 0 < |� − 2| < � ⇒ |�� − 8| < � 
 

Now|�� − 8| = |� − 2||�� + 2� + 4|; 
 

Letting |� − 2| < 1 for the moment, we proceed to find an upper 
bound for |�� + 2� + 4|. 
 

(Note that, giving an upper bound of 1 for |x – 2| is valid, since the 
limit definition works best for small neighborhoods of x = 2.  In fact, 
we can choose any upper bound between 0 and 1.) 
 

|�� + 2� + 4| = |(� − 2)� + 6(� − 2) + 12| 
≤ |� − 2|� + 6|� − 2| + 12 
< 1 + 6 + 12 = 19. 
 

From this we get |�� − 8| = |� − 2||�� + 2� + 4| <
19|� − 2| < �, with the rightmost inequality being the end result 
that we require.  In other words, if we let 0 < |� − 2| < � ≡

��� �1,
�

��
�, then we can retrace our steps to show that indeed, 

|�� − 8| < � for any pre-assigned positive �.Thus, we have shown 
that 8 is a limit for �(�)  =  ��as � approaches 2, but true enough, 
this whole argument does not imply uniqueness of 8 as a limit.  Is 
there a way of ruling out other candidates by using the same � − � 
definition?  This is one of the basic points which those who seek to 
replace the Cauchy definition bring to the fore as evidence that such 
formalism might be incomplete.  The next question that has to be 
asked then is -- Is the Cauchy definition capable of ruling out unviable 
candidates as limits? Fortunately, the formal � − � definition can still 
be used, as can be gleaned in the following illustration. For the sake 
of argument, let us take the limit of the function �� at � = 2to be 
equal to 7. Then  
 

|�(�) − �| = |�� − 7| = |(� − 2)� + 6(� − 2)� +
12(� − 2) + 1|. 
 

From here we consider two cases: 
 

Case 1.� > 2 
 

If � > 2, then |�� − 7| = |(� − 2)� + 6(� − 2)� + 12(� − 2) +

1| =  (� − 2)� + 6(� − 2)� + 12(� − 2) + 1 > 1. 
Therefore, no amount of nearness of x to 1 will ever make |�� − 7| 
close to 0. 
 

Case 2. � < 2 
 

If � < 2, then we can let � = 2 − �, � > 0, thus turning |�� −
7| = |−�� + 6�� − 12� + 1| = |�� − 6�� + 12� − 1|.  It is 
enough to find values of k satisfying both  
�� − 6�� + 12� − 1 > 0 and  �� − 6�� + 12� − (1 + �) >
0, of which we are certain do exist, in the light of Descartes’ rule of 
signs, for any pre-assigned positive �.  We then get the inequality  
|�� − 7| = �� − 6�� + 12� − 1 > �. 
 

In other words, no amount of nearness of � to the number 2 will ever 
make |�� − 7| close to 0.  Consequently, a positive � cannot be 
found that will satisfy the formal definition.  Thus, we have shown that 

����→� �� ≠ 7.  But you will notice that it took us a considerable 
amount of preparation just to rule out one number as a limit of the 
function.  The procedure would be similar for the case of numbers not 
equal to 7, although admittedly it is impossible to rule out all the other 
numbers as limits. However, the � − � definition itself in its generality 
gives us a way out of this dilemma, and thus enabling us to establish 
the uniqueness of the limit which we have obtained. Any standard 
course in mathematical analysis presents the proof of the uniqueness 
of the value, but we reproduce it here to show the level of rigor (and 
elegance) of the formal definition. 
 

Proof of the uniqueness of the limit L. 
 

Suppose there are two distinct limits L and L’ for f(x) as x 
approaches a. Then each limit satisfies the ϵ − δ definition. 
 

⇒ lim�→� f(x) = L ⇔ ∀ϵ > 0 ∃δ� > 0 ∋ ∀ 0 < |x − a| <

δ� ⇒ |f(x) − L| <
�

�
ϵ. 

 

Also,  
 

⇒ lim�→� f(x) = L ⇔ ∀ϵ > 0 ∃δ� > 0 ∋ ∀ 0 < |x − a| <

δ� ⇒ |f(x) − L′| <
�

�
ϵ. 

⇒ |f(x) − L| + �f(x) − L′� =  |f(x) − L| + �L′ − f(x)� ≤

�L′ − L� <
�

�
ϵ +

�

�
ϵ =  ϵ, 

 

Since ϵ > 0 is arbitrary and �L′ − L� is a fixed positive quantity, the 

nature of ϵ enables us to choose a value much lower than �L′ − L� to 

arrive at a contradiction.  (For example, let � =
�

�
�L′ − L�.) Hence, 

when a particular value is found to satisfy the ϵ − δ definition, we are 
certain that it is the one and only limitof the function for that point. 
 

Proving a Number is Not a Limit: A Reprise 
 

We want to demonstrate the fact that the Cauchy definition of limit 
can also be used to indirectly show that a number is not a limit of a 
function as x approaches a number �.For is purpose, we reproduce 
the formal definition in terms of symbols from mathematical logic: 
 

lim�→� f(x) = L ⇔ ∀ϵ > 0 ∃δ > 0 ∋ ∀ 0 < |x − a| < δ ⇒
|f(x) − L| < ϵ. 
 

The negative (or negation) of this statement is: 
 

lim�→� f(x) ≠ L ⇔ ∃ϵ > 0 ∀δ > 0 ∋ ∃ 0 < |x − a| < δ ⇒
|f(x) − L| ≥ ϵ. 
 

A direct translation of the preceding symbolism can be produced:  A 
number L is not the limit of the function f(x) as x approaches �if and 
only if there exists a positive ϵ such that for any positive δ, there 
exists some x with 0 < |x − a| < δ implying the inequality |f(x) −
L| ≥ ϵ.  To give an example, let us consider the common, but simple 
function  
 

f(x) =
|�|

�
⇔ f(x) = �

−1, x < 0
1, x > 0

�, 

 

and show that there is not any real number that can be the limit for 
this function as x approaches 0.  In symbols, we wish to show that 
lim�→� f(x) ≠ L ⇔ ∃ϵ > 0 ∀δ > 0 ∋ ∃ 0 < |x| < δ ⇒
|±1 − L| ≥ ϵ. 
 

The discussion can be broken down into several cases: 
 

Case 1. L > 1. 
 

If the limit is greater than 1, then it follows thatL − 1 = |L − 1| <
L + 1 = |−1 − L|.  In other words, we can let ϵ = L − 1, and for 
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any neighborhood  0 < |x| < δ, one will always get |f(x) − L| =
|±1 − L| ≥ ϵ. 
 

Case 2. L < −1. 
 

If the limit is less than −1, then  −1 − L = |−1 − L| < 1 − L =
|1 − L|, hence we can let ϵ = −1 − L, and for any neighborhood  
0 < |x| < δ, one will always get |f(x) − L| = |±1 − L| ≥ ϵ. 
 

Case 3. −1 < L < 1. 
 

If the limit is between  −1 and 1, then  |1 − L| = 1 − Land 
|−1 − L| = L + 1,  and we can have ϵ = min{L + 1, 1 − L}, 
and again for any neighborhood  0 < |x| < δ, and again we get 
|f(x) − L| = |±1 − L| ≥ ϵ. 
 

Case 4. L = 1. 
 

The limit cannot possibly be 1, since even though |1 − L| = 0 for 
any interval (0, δ), |−1 − L| = 2 for any interval (−δ, 0), and so 
we can choose ϵ to be any number from (0,2].  The case for 
L = −1 runs very similar, and so is omitted here. 
 

The foregoing discussion concludes that the function f(x) =
|�|

�
 does 

not have a limit as x approaches 0, and demonstrates that the 
negation of the Cauchy definition for limits (which is a logically 
equivalent statement) can also be used to prove that the limit of a 
function does not exist at a particular value of x. 
 
Is That the End of the Issue? 
 
Apparently, the debate is not over, since the concept of limit naturally 
passes on to another equally important concept – the derivative of a 
function.  The derivative can be treated as a special kind of limit, 
becoming the basis of much of mathematical analysis and having 
wide-ranging application, not only within mathematics, but also 
outside.  It is no wonder that a lot of time and effort have been spent 
in making the foundations of the limit very precise and airtight, so that 
no questions would arise if and when it is applied to other fields of 
study.  There have been attempts, however, to make the operations 
involving limits more similar to arithmetic, based only on familiar 
operations and requiring none of the infinite processes.  There are 
still those who believe that this effort is still worth pursuing due to the 
insistence on the non-existence of infinite quantities. The issue 
becomes even more interesting and important on the pedagogic level 
since university students unwittingly commit the same error whenever 
they evaluate limits – there is a tendency of conveniently dropping the 

“
���

� → �
” symbol and then outright substituting ℎ =  0 into limit 

expressions when it is totally unwarranted.  A probable reason behind 
this practice is expediency for some, and lack of appreciation for the 
concept for many. The concept of limit is very much the source of 
ambiguity in the evaluation of certain limits, giving rise to special 
quantities which are quite well known now as “indeterminate forms”.  
The discussion about these quantities is not new, and one can see 
mistakes made by both professionals and enthusiasts in performing 
operations involving infinitesimal magnitudes.  Take for example the 
indeterminate form 0�.  We cannot really pin down its “exact” value, 
because the 0 (either the base or exponent) could be interpreted as 
virtually or practically so small that its value is negligible.  Aside from 
the fact that the two interpretations below can be made [4], 
 

lim�→� �� = 1   and lim�→�� 0� = 0, 
 

0� can additionally be interpreted as something of “negligiblenegligible”, 
which only adds to the confusion.  Thus 0� can be represented as 
being one of the following values: 
0.0000001�.��������, or 0.0000001��.��������, or 
(−0.00000001)�.��������, or (−0.00000001)��.��������, and 
no one will be questioning your interpretation without the stipulation of 
any initial assumptions.  Pick your poison on this one, so to speak. 
The point of this matter is that the concept of the infinitely small (or 
the infinitely big) could be tricky and touchy that some people would 
outright do away with them completely to avoid the heavy 
inconvenience of further analysis. 
 

Now back to the derivative.  The derivative of a function �(�), 
symbolized as �’(�),is defined as: 
 
�

��
�(�) = � ′(�) = lim�→�

�(���)��(�)

�
, 

 

as is well known by now.  (The derivative given in this form is 
sometimes also called Fréchet derivative.)  In the definition above, 
the approach to 0 by ℎ could be from positive numbers or negative 
numbers, in which case we could speak of right – hand derivative or 
left-hand derivative, respectively.  As a particular case, if the 
derivative exists then the two-sided derivatives must exist and should 
be equal.  But in general, the approach to 0 could be quite arbitrary. 
Just like in the case of general limits, the issue seems to stem from 
the a priori assumption on the derivative function that is used in the 
Cauchy definition (in addition to the objection to some of the 
infinitesimal operations involved because of the categorical rejection 
of the concept of the ‘infinitely’ small). Take again the case for the 
function �(�) =  ��.  Parties who claim that derivative operations 
can be reduced to algebraic formulas conclude that rules can be set 
so as to make the determination of the derivative automatic.  
Immediately, they would say that the derivative of �� is 3��.  True 
enough, the foregoing exercise can be finished on a mere visit to any 
standard derivative formulas for the elementary functions.  Even the 
application of its definition is simple enough, if one cares to do the 
requisite steps: 
 

�

��
�� =  lim

�→�

(� + ℎ)� − ��

ℎ
= lim

�→�

3ℎ�� + 3ℎ� + ℎ�

ℎ
= lim

�→�
(3�� + 3ℎ� + ℎ�) = 3�� 

 

Note that, during the entire limiting process, I never dropped the limit 
prefix symbol, only omitting it during the step before the final 
evaluation, after making sure that the substitution of the ℎ = 0 would 
give a valid expression (i.e., not indeterminate). The limit prefix is the 
license that enables one to divide by ℎ during the entire limiting 
process, and should not be dropped at any point, since maintaining it 
pre-supposes that ℎ ≠ 0, and hence division by it is possible.  As we 
have argued before regarding the answer obtained from a limiting 
process, the function that was obtained, technically, is at best a 
derivative of ��.  But as we have also shown in the preceding 
section, that limit value is the one and only that is possible, if it exists 
at all. This harkens back to the principles of existence and 
uniqueness of quantities or entities in mathematics which were 
mentioned earlier in this article. That being said, can the Cauchy 
definition be used to disprove that another function, say ��, is not the 
derivative of ��?  Absolutely, as the two examples below will show: 
 

Example 1. 

Suppose the derivative of the function �(�) = ��to be the function ��.   
 
 

⇒ �
(� + ℎ)� − ��

ℎ
− ��� = |2�� + 3ℎ� + ℎ�|

= |� + ℎ||2� + ℎ| 
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= |� − (−ℎ)||2� − (−ℎ)| ≥ �|�| − |ℎ|��2|�| − |ℎ|�

≥  (|�| − |ℎ|)(2|�| − |ℎ|) 
 

Now if we consider all ℎ values such that 0 < |ℎ| <
|�|

�
, then one 

obtains 

(|�| − |ℎ|)(2|�| − |ℎ|) ≥
|�|

2
∙

3|�|

2
=  

3

4
�� 

That is,  

�
(���)����

�
− ��� ≥  

�

�
��. 

In other words, no matter how small ℎ gets, the absolute value of the 
difference between the difference quotient and �� will be greater than 

an amount equal to 
�

�
��. Consequently, no � > 0 will ever satisfy 

the Cauchy limit definition, and if we’re going to look back at the 
negation of the Cauchy definition, we conclude that �� cannot be the 
derivative of ��. 

Example 2. 
Suppose the derivative of �(�) = �� is the function �. 

I start off the proof with the claim that 
����

�
> 1 for all � > 0.   

One will realize that this is the case after observing that 
����

�
 is just 

the slope of the secant line from the point (0,1) to the point (�, ��) on  
the graph of the function �(�) = ��.  Noting that the slope of the 

tangent line to �� is just equal to �
�

��
���

���
= lim�→�

����

�
= 1, as 

well as the fact that the secant lines emanating from the point (0, 1) to 
the point (�, ��) are steeper than the tangent line at (0, 1) (hence 

have slopes greater than 1), it then follows that 
����

�
> 1 for all  

� > 0. 
Now on to the proof that � cannot possibly be the derivative of ��.  
The negation of the Cauchy definition will again be used.  For our 
purpose it will be sufficient to focus only on the interval (�, � + �) for 
all � > ℎ > 0. 

⇒ �
�������

�
− �� = ��� ����

�
− �� > |�� − �| = �� − �. 

 
The last expression is devoid of ℎ, and thus for every � > 0 such 

that (�, � + �), letting � = �� − � then gives us �
�������

�
− �� >

�, and this finishes the proof.  
 
Note that the two preceding examples give us a general procedure as 
to how we can prove that an individual function cannot be a derivative 
of a given function.  Admittedly, this process is entirely unnecessary, 
as the definition of the Cauchy limit ensures us that once the 
existence of one candidate function is established, the uniqueness of 
the limit proves that it also the only derivative possible. The 
calculations were shown here to highlight the level of rigor and 
accuracy that comes in using the Cauchy definition, be it in the 
positive or the negative sense. 

 
The Three D’s (Darboux, Dini, and Denjoy et al) 
 

The following discussion relates something to a property of the 
derivative, and doesn’t deal exactly with foundational issues with 
limits.  It is nonetheless part of an ongoing debate, and tells 
something about the level of understanding (or misunderstanding) 
regarding the nature of the derivative.  The thing I refer to is the Mean 
Value Theorem for derivatives.  Let us first have the formal statement 
of this important result: 
 

Let �(�) be continuous over the closed interval [�, �] and 

differentiable over the open interval(�, �).  Then� ′(�) =  
�(�)��(�)

���
 

for some � such that � ∈ (�, �) 
 

Geometrically, this means that the secant line passing through the 
endpoints of the graph of the function over the interval [a, b] will be 
parallel to at least one tangent line to the graph of the function for 
some interior point. The mean value theorem (MVT) gives sufficient 
(and not necessary) conditions on the function �(�)for the 
consequence to hold true.  Many students take the case of 
committing the mistake of giving conditions running against the 
theorem but arriving at the same consequence as evidence that the 
theorem is not true in general. There even are students who would 
wish to give a restatement of the Mean Value Theorem for 
derivatives, saying that a more precise expression of the result would 
be the following: 
 

There exists � ∈ (�, �) such that � ′(�) ∙ (� − �) = ∫ � ′(�)��
�

�
 

for � ′(�) integrable over [�, �]. 
 

There’s nothing erroneous about the preceding statement in reality, 
as this is a direct statement involving the mean value theorem for 
integrals, with the derivative function � ′(�)replacing the usual �(�) 
instead.  If the function �’(�) has an antiderivative, or if �’(�) is 
Riemann integrable, then it is straightforward to retrieve �(�), at 

least hypothetically, giving ∫ � ′(�)��
�

�
= �(�) − �(�), and this 

brings us back to the original statement of mean value theorem for 
derivatives. The unfavorable aspect to the suggested restatement is 
mainly the chronological untimeliness it causes on the pedagogical 
timeline.  It would sound odd and out of context to abruptly mention 
something involving the integral in a result when all previous 
discussions which led to it talked about derivatives only.  The timeline 
for all academic discussions that culminate to the MVT points to the 
economy of delivery that has pervaded mainstream mathematics 
pedagogy, and in our case what we are really saying is that the 
concept of the integral is not needed for a full treatment and 
appreciation of the MVT for derivatives.  Considering otherwise will 
render the entire order of the Calculus syllabus out of sync, which 
could be a much bigger issue than what it originally intended to 
improve on. One of the points we wish reiterate here is that, not 
satisfying the conditions of the MVT does not preclude the possibility 
of its consequence being true.  This fact can be seen from the few 
examples given below. 
 

Example 1. The function �(�) = (� − 1)�/� + 3 is continuous 
over the interval [0,2], but not differentiable over (0,2) (not entirely, at 
least).  The endpoints of the graph are the points (0, 2) and (2, 4), 
and the slope of the secant line passing through these points is 1.  
Incidentally, a bit of algebra using its derivative function � ′(�) =

 
�

�(���)�/� will yield two values of � = 1 ±
√�

�
.  

 

Example 2. The function �(�) = �
(� − 1)�/� + 3, � ∈ [0,1]

(� − 1)�/� + 4, � ∈ (1,2]
� is  

 

 

an example of a function that is not continuous over [0, 2] and not 
differentiable over (0, 2) but nevertheless gives the same result as the 
MVT.  The two values of � that give the same slope of 5/2 of the 

secant line through the endpoints are 1 ±
�

��
√2.  Note that each of 

the two pieces of the function yield the same derivative function over 
each of its interior, hence there is essentially one derivative equation 
to consider and solve. 
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Example 3.  The function 

�(�) = �

�, [0,1)

� − 1, [1,2]

� (2,3]

� 

 

 

is an example of a function which is again not continuous over a 
closed interval and not differentiable over the interior and gives the 
same conclusion as the MVT. The slope of the secant line through 
the endpoints is clearly 1, but for all points except the endpoints and 
� =  1 and� = 2, the derivative is also equal to 1.  Hence there are 
infinitely many � values that satisfy the conclusion of the MVT in this 
case. One issue which makes it difficult to understand the Mean 
Value Theorem is its striking similarity to the statement of Darboux’s 
theorem, which basically says that if a function is differentiable over 
the interval [�, �] then it satisfies the intermediate value property [5].  
(We have to give allowance here for the endpoints because we are 
dealing with a closed interval rather than an open one. Differentiability 
at the left endpoint means the right-hand derivative exists; while at 
the right endpoint, the left-hand derivative exists.)  Hence, if � and � 
are numbers such that � < � < � < � and � is a number such that 
� ′(�) < � < �′(�) then there is some � ∈ (�, �) such that 
� ′(�) = �. The two theorems give two different conditions and 
conclusions.  Some students would say that the case of the infinite 
derivative at the point � = 1 in Example 1 violates the MVT’s 
conclusion when they unwittingly have Darboux’s theorem in mind.  
And apparently the state of affairs in this example undermines the 
truth of the MVT.In fact, all the possible ‘statuses’ of the derivative at 
any in an interval have already been predicted by a result known as 
the Denjoy-Young-Saks theorem (DYS).  We will elaborate on this 
important result a little later.  To have an appreciationDYS, we have 
to mention what are called Dini derivatives (or Dini derivates), which 
are important in analyzing the differentiability of the function at a 
point.  The four Dini derivatives are defined as follows [6]: 
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They were named after the Italian mathematician Ulisse Dini (1845 – 
1918). The DYS theorem [7] says that if � is a real-valued function 
defined on an interval, then with the possible exception of a set of 
measure 0 on the interval, the Dini derivatives of � satisfy one of the 
following four conditions at each point: 
 

 �  has a finite derivative 
 ��� = ���are finite, ��� = ∞, and ��� = −∞. 
 ��� = ���are finite, ��� = ∞, and ��� = −∞. 
 ��� = ��� = ∞, and ��� = ��� = −∞. 
 

The DYS theorem is such an all-encompassing result that we ask, as 
a means of verifying its accuracy, how do we classify the interior 
points of the three examples above with respect to it?  In Example 1, 
all points in the open interval (0, 2), except for � =  1, fall under type 
(i), in which �’(�) is finite.  For the point � = 1 itself, ���(�) =
���(�) = +∞ , and ���(�) = ���(�) = 1.  Apparently, the 
point � = 1 doesn’t fall under any type, but this situation is fine, since 

the measure of this single point is 0, and clearly this is consistent with 
the consequence as predicted by DYS. 
 

In Example 2, one still obtains ���(�) = ���(�) = +∞, but 
���(�) = 1 and ���(�) = 2. The conclusion is still the same as 
that for Example 1.   
 

The reader is now invited to classify the interior points with respect to 
DYS for Example 3.  (For the point � = 1 in example 3, ���(1) =
���(1) = 1, while ���(1) = 0 and ���(1) = −∞.  Do these 
answers violate DYS?  What about for� = 2?) 
 

CONCLUSION 
 

Our preceding exposition clearly brings out the versatility and rigor of 
the Cauchy definition of the limit.  First brought out to the world in 
1821, Cauchy’s definition of the limit has withstood the test of 200 
years of analysis and scrutiny, regardless of geography.  It has 
become canon in all mathematical analysis syllabi for all levels of 
pedagogy and investigation in both the elementary and advanced 
levels.  Any attempt to replace the Cauchy definition would have to 
stand not only the test of time, but also the test of mathematical 
breadth and depth. Turning to a particular case, the Cauchy definition 
has been so far precise in defining the derivative of a function, and is 
equally clear in giving meaning to differentiability of a function at a 
point. Any attempt at a replacement would have to show that it could 
be more precise in expression but flexible enough (for lack of a better 
word) to be used in all proofs and applications. Perhaps the closest a 
replacement could have got which involves the differentiability of a 
function is Caratheodory’s definition of the derivative. (Which was 
named after the Greek mathematician Constantin Caratheodory 
(1873 – 1950).)  
 

Caratheodory defined differentiability as follows [8]: 
 

The function f is differentiable at � =  � ∈ �, where � is an open 
interval, if there exists a continuous function ��(�)at � = �such 
that�(�) − �(�) = ��(�)(� − �). 
 

The Caratheodory definition is simpler than the Cauchy limit 
definition, and apparently doesn’t make use of the limit notation.  It is 
important to emphasize that the Caratheodory differentiability is 
equivalent to the Cauchy differentiability.  However, Caratheodory 
takes direct advantage of the continuity of a function at a point, the 
foundations of which is still based on the Cauchy limit of a function.   
 
(This can be deduced when we observe that ��(�)is continuous 
at� =  � making ��(�)finite, and consequently�(�) →
�(�)as� → �.From this it is conclusive �’(�) = �� (�).)The 
Caratheodory definition is powerful enough to prove the Chain Rule, 
the Inverse Function Theorem, and the Critical Point Theorem among 
other important things [9], but has not been attractive enough to the 
larger mathematical community so as to replace the current 
pedagogical approach which is based on the Cauchy definition of 
limit.  It seems that any attempt at a replacement eventually becomes 
relegated to the status of “Further Studies”, open to students for 
treatment only after a clear appreciation of the standard approach has 
been ensured, presumably not only because of the latter’s 
thoroughness but as well as its time-tested precision and rigor.  Until 
a replacement candidate has proven that it can do better on the basis 
of these grounds, the Cauchy definition is here to stay. And for a very 
long time in the future. 
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