
International Journal of Innovation Scientific Research and Review 

Vol. 06, Issue, 11, pp.7338-7352, November 2024 

Available online at http://www.journalijisr.com 

SJIF Impact Factor 2023: 6.599 
 

Research Article 

 
ISSN: 2582-6131 

 

DEVELOPMENT AND APPLICATION OF AN INTELLIGENT TRAFFIC MANAGEMENT SYSTEM 
BASED ON YOLOV5 AND ALEXNET V3 FOR ROAD SAFETY ENHANCEMENT 

 
1, * Isatou K Njie, 2Yongqian Sun, 1Olumayowa O. Adedara, 1Oyeleke Samuel Oluwafemi 

  
1MSc Software Engineering (College of Software), Nankai University, Tianjin, China. 

2Professor, College of Software, Nankai University (Supervisor), Tianjin, China. 
 

Received 11th September 2024; Accepted 12th October 2024; Published online 30th November 2024 
 

 

ABSTRACT 
 

Traffic congestion is a growing issue, especially in urban areas, requiring improved real-time traffic monitoring to enhance signal control and overall 
management. This research presents an intelligent traffic management system that optimizes traffic light operations based on real-time traffic density. Using 
image processing techniques with YOLOv5 and AlexNet V3, live camera feeds are analyzed to detect vehicles, monitor lanes, and adjust signal timings. This 
approach reduces congestion, improves road safety, and streamlines traffic flow. Python Open CV libraries and the Anaconda IDE were used to design and 
implement the system, ensuring efficient real-time data analysis for traffic management. 
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INTRODUCTION 
 

Urban transportation challenges are a global issue that impacts us 
daily, and many developing nations grapple with various difficulties 
related to traffic control, traffic management, and road safety. These 
obstacles encompass insufficient infrastructure, the absence of traffic 
monitoring systems, and limited resources for efficient traffic 
management. 
 

The case study of The Gambia illustrates these challenges. Like 
many developing nations, the Gambia is dealing with traffic 
management and road safety challenges due to population growth, 
increased vehicles, and diverse road infrastructure. The inadequacy 
of proper roads contributes to frequent traffic accidents and 
congestion. Additionally, many urban areas face issues with fixed 
time cycles for intersectional traffic signals. Small activities, such as 
stopping a vehicle at an intersection or a vehicle breaking the traffic 
signal, cause a chain reaction that ultimately prompts colossal car 
influxes. This is confirmed in a study done by Dr. Gabor Oros z of the 
University of Exeter [1]. 
 

Effective management of vehicular movement is crucial for reducing 
congestion, safeguarding road users’ well-being, and maintaining 
overall road safety. Conventional traffic management systems often 
strug-gle to handle growing congestion levels, leading to longer travel 
times, increased fuel consumption, and higher pollution levels. Fresh 
approaches are required to successfully address the limits of manual 
monitor-ing. According to research, artificial intelligence can efficiently 
address transportation concerns such as traffic management, safety, 
public transit, and urban mobility. 
 
The existing traffic light system has a defined length and requires 
manual involvement from police officers to make changes. This 
approach is not very helpful since it relies on physically capturing 
offenders, which causes more congestion. Utilizing available  
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information and data can lead to smarter services that enhance living 
conditions. An improved approach would involve determining signal 
times based on the number of cars crossing the intersection. If there 
is a higher volume of cars in a particular lane, the signal duration will 
be extended to alleviate congestion. 
 

This paper aims to comprehensively study and explore how cutting-
edge smart technologies integrated with data-driven insights can 
transform traffic management and enhance road safety. It suggests 
leveraging image processing from surveillance cameras and 
implementing a feedback mechanism in traffic light operations that 
considers traffic density during peak times. 
 

Overall, this paper provides the following contributions: 
 

 Development of an intelligent traffic management system 
utilizing AI technologies for real-time traffic monitoring and 
control. 

 Implementing AI-powered traffic light control systems that 
dynamically adjust signal timings based on real-time traffic 
density. 

 Introduction of an emergency vehicle prioritization mechanism 
that enables quicker response times through intelligent traffic 
signal adjustments. 

 Application of image processing techniques to enhance road 
safety and reduce congestion in urban areas. 

 

The rest of this article is organized as follows. Section 2 discusses 
the related work and technology background. Section 3 presents the 
experimental results and discussion. Section 4 describes the system 
architecture and explains the principles of operation. Section 5 shows 
the implementation and testing of the system. Finally, Section 6 
concludes the paper. 
 

LITERATURE REVIEW 
 
Over the years, there has been an increasing amount of literature on 
several works and research done to solve the problems of traffic 
congestion, and road safety using artificial intelligence techniques. 



In 2014, Kanungo et al., in their work, proposed a system that utilizes 
video processing techniques for intelligent traffic light switching and 
real-time traffic density calculations at a four-way junction. The 
proposed system makes use of video cameras that are installed over 
red lights on each side of the junction. The cameras capture live 
feeds from the traffic and then process these feeds on a server using 
video image processing techniques [2]. The setback of the proposed 
system is it heavily depends on costly video cameras for its operation 
and has subpar performance in adverse weather conditions as well 
as concerns regarding scalability for larger traffic junctions. 
 

Based on the research by Kanungo et al., (2014) [2] Khekare, G.S. et 
al., (2013) proposed the concept of VANETs (Vehicular Ad Hoc 
Networks). These networks serve as examples of technologies 
facilitating communication between vehicles and roadside units. 
VANETs play a role that significantly impacts the concepts behind 
smart city designs. The study focuses on a city framework designed 
to help drivers make intelligent decisions to avoid traffic congestion 
ultimately leading to reduced traffic jams. Additionally, it aims to 
provide real-time information on traffic conditions [3]. Their proposed 
system encounters a limitation in implementing VANET because it 
necessitates the installation of suitable hardware on every vehicle 
which can be difficult for two-wheelers. The entire framework is 
dependent on the user’s decisions since traffic congestion will rely on 
them. 
 

In 2010, Salama A.S., Saleh B.K., and Eassa M.M. introduced a 
system that uses sensors to manage traffic signals based on realtime 
vehicle movements. Their work was acknowledged by Kanungo et al., 
in 2014 [2]. The system prioritizes roads with congestion and allows 
for emergency vehicles to receive priority using active RFID 
technology, adapting to traffic patterns and congestion levels [4]. 
 
In 2009, Haimeng Zhao et al., introduced a traffic light system that 
uses a DSP, Nios II, and FPGA for dynamic control based on user 
demands. Both systems require ongoing analysis and maintenance 
and are vulnerable to damage due to challenging exterior conditions 
[5]. To enhance traffic flow and prioritize emergency vehicles, Varun 
Chava et al., presented a smart traffic control system in 2023 that 
integrates the YOLOv4 and Mobile NetV2 convolutional neural 
network models. The system’s primary objectives are to decrease the 
need for human involvement, provide precise traffic management 
results, and improve the effectiveness of real-time control. The entire 
number of cars on the road was counted, the average size of vehicles 
was calculated, and traffic signals were dynamically adjusted  
 

based on the density of vehicles and the presence of emergency 
vehicles through the use of high-resolution cameras [6]. The 
proposed system also has limitations as it highly depends on 
hardware sensors like RFID, and high-resolution cameras which 
could pose a challenge in terms of maintenance, scalability of the 
system, and practical application. Tushar Deb Nath proposed an 
advanced Internet of Things-based road traffic control system in 
2021. Intersection intelligent street lights monitor four important 
variables: number of cars, time it takes to activate, amount of waiting 
time, and emergency signals for each lane. To precisely count the 
number of cars on the road, this study uses an automated video 
processing technique that combines a Fully Convolutional Network 
(FCN) for precise pixel boundaries and a faster R-CNN for object 
detection (class + bounding box) [7]. 
 

In 2023, Sanjai et al., suggested an image-processing-based method 
for detecting ambulances in traffic signals. Ambulance classification is 
the main topic. Their method classifies and identifies emergency 
vehicles according to their sort, make, or model using a convolutional 
neural network and VGG-16. VGG-16 CNNs and emergency photos 

are used in this strategy. Ambulance classification is made accurate 
and efficient with the use of these two [8]. 
 
A model for ambulance detection was proposed by Bhoomika (2022) 
[9] and Agrawal (2021) [10], as cited by Chava et al.,(2023), and it 
was created utilizing the YOLOv5 and YOLOv3 algorithms in different 
works. While Bhoomika (2022) employs the YOLOv5 method, [10] 
uses the YOLOv3 algorithm to classify vehicles in images collected 
from the footage as automobiles, buses, or trucks. Both models used 
predetermined algorithms. A pre-trained algorithm receives the 
cropped image of a vehicle that has been classified as a truck and 
uses it to determine whether or not it is an ambulance. However, the 
methods used by [9] and [10] both necessitate saving photographs 
each time which uses up storage space when processing image 
folders. 
 

Using a convolutional neural network (CNN), Deepajothi et al., (2021) 
[11], as referenced by Chava et al., (2023) [6], developed a traffic 
management model for the detection of emergency vehicles. The 
Raspberry Pi is equipped with the CNN model and it will quickly 
decide whether to permit emergency vehicles to pass based on a 
traffic video input. However, the main purpose of this traffic system is 
for emergency vehicles. The output is red if there isn’t an emergency 
vehicle visible in the input video. Other cars are not taken into 
account by this model, therefore traffic management for such a 
scenario is not offered. 
 

Gandhi(2020) [12] and Rangari et al., (2022) [13] suggested that the 
YOLO algorithm may be used to control traffic light signals 
consecutively. According to [12], the amount of traffic on the road 
determines when the green light should turn on. Thus, by employing 
YOLO (You Look Only Once) in image processing, the traffic density 
is determined. The JSON format is transformed from the YOLO to be 
used as an input (count of vehicles) for determining how long it will 
take for the green light to appear. Thus, the present traffic density 
determines when the green signal will turn on. [13] designed an 
intelligent traffic management system for India using YOLOv7. In 
terms of speed and accuracy, that iteration of the YOLO algorithm 
performs 
 

better than any prior model for object detection. 
 

Our model employs the hybrid approach of combining the strengths of 
YOLOv5 and AlexNet V3 to detect, classify, and count vehicles. The 
system in real-time can detect the video stream from a live camera. 
The implementation of this approach runs videos at 30-40 frames per 
second. This makes it detect objects and vehicles very quickly. It 
uses a low-power processor of 2.4 GHz. By using that, we can be 
able to achieve low-power operation - making this method the most 
suitable for traffic control. The system successfully deals with traffic 
data processing, vehicle recognition and classification, traffic 
forecasting, and real-time traffic control. 
 
Conventional Traffic Control System 
 
Many regions still use the conventional traffic control system to 
manage vehicular and pedestrian traffic flow on roads and 
intersections. The conventional traffic control system consists of: 
 

 Traffic Signals and Signs: Traffic signals regulate the flow of 
traffic in urban areas. These areas utilize internationally 
standardized signals, with red, yellow, and green controlling the 
traffic movements. This automatic system has a disadvantage as 
it can cause excessive delays in traffic as it glitches and stops 
working at some point. 
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 Manual Traffic Enforcement: Police Officers are responsible for 
manually controlling traffic and making sure people comply with 
speed limits, seatbelt rules, and other traffic rules. Officers use a 
board, a sign light, and a whistle. This method is tedious and 
human errors are unavoidable, which results in compromises 
and uncontrollability of traffic. 

 
Limitations of Current AI Technologies in Developing Countries 
 
 Infrastructural Limitations: Numerous developing countries may 

face obstacles regarding infrastructure which hinders the 
adoption of advanced AI technologies. These challenges include 
inadequate road networks, limited availability of high-speed 
internet, and a lack of extensive sensor systems necessary for 
gathering traffic information. 

 A lack of technical expertise can be a hindrance. Insufficient 
local technical knowledge could challenge AI systems’ 
advancement, implementation, and administration. The scarcity 
of AI and machine learning professionals may delay integration 
and increase reliance on foreign expertise, resulting in higher 
costs. 

 AI systems, particularly our system that uses YOLO and 
AlexNet, require a steady source of energy to function 
effectively. Outages of electricity and inconsistent electrical 
distribution can interrupt traffic management systems, resulting 
in inefficiencies and a reduction in effectiveness. 

  

Theoretical Framework 
 
1) Data Collection and Analysis: Plan methods for collecting data, 

observing with creativity and standardized techniques. Big data 
analysis and AI predict traffic trends and behavioral patterns. 

2) Regulatory Framework and Enforcement: Cover elements for 
implementing AI-driven systems, aligning regulations with AI 
functionalities, ensuring enforcement, and establishing 
guidelines. 

3) Stakeholder Engagement and Capacity Building: Collaborate 
with government agencies and community groups, investing in 
training programs to utilize intelligent technologies effectively. 

4) Infrastructure Integration: Explore integrating intelligent 
technologies into existing infrastructure, evaluating suitability, 
and enhancing road infrastructure. 

 

Conceptual Framework for Implementation 
 
Notwithstanding the recently portrayed hypothetical establishment, a 
solid reasonable structure that tends to both the key and functional 
parts of the combination cycle is expected for the effective execution 
of artificial intelligence-based traffic management frameworks. 
 

1) Policy and Governance Framework: Establish protocols for data 
collection and utilization, ensuring AI solutions prioritize 
stakeholder needs. 

2) Risk Assessment and Mitigation Strategies: Integrate risk 
assessments, examining challenges and cy-bersecurity 
implications, with proactive mitigation strategies. 

3) Financial and Resource Planning: Focus on acquiring funds and 
resources, forming partnerships, and developing long-term 
financial strategies. 

4) Performance Monitoring and Evaluation: Include methods for 
monitoring AI solutions and defining metrics for traffic signal 
efficiency and road safety outcomes. 

 
This framework establishes the groundwork for the efficient 
implementation of AI-driven traffic management solutions. 

METHODOLOGY 
 
The idea of developing a system using cutting-edge technology aims 
to enhance road safety, traffic flow, and signal control, with 
capabilities for detecting cars, trucks, buses, and pedestrians. This 
setup employs AI components to analyze visuals and predict traffic 
volume. A camera is installed alongside traffic lights to capture image 
sequences, which are processed to identify and count vehicles. The 
system uses Python’s Open CV library for image processing to 
classify vehicle types accurately. 
 

Utilizing AI technologies like YOLOv5 and AlexNet V3, the system 
performs real-time traffic analysis and management. Based on 
vehicle count, traffic signals are dynamically adjusted to alleviate 
congestion and prioritize emergency vehicles. This integration 
enhances precision and efficiency, enabling signal control, incident 
detection, and valuable insights for traffic control purposes. Figure 3.1 
shows traffic lights with a camera installed alongside it to capture 
video feeds. 
 

 
 

Figure 3.1: Traffic lights with Camera 

 
Models Used in the System 
 
AlexNet Convolutional Neural Network 
 
AlexNet consists of eight layers: the first five are convolutional, and 
the last three are fully connected. The output from the last fully 
connected layer feeds into a 1000-way softmax, generating a 
distribution over 1000 class labels. AlexNet maximizes the 
multinomial logistic regression objective by enhancing the average 
log probability of correct label predictions. The second, fourth, and 
fifth convolutional layers connect only to kernel maps in the preceding 
layer on the same GPU, while the third convolutional layer connects 
to all kernel maps in the second layer. Neurons in fully connected 
layers interconnect with all neurons in the previous layer. Max-pooling 
layers follow both response normalization layers and the fifth 
convolutional layer. The ReLU activation function is applied to all 
layers. The first convolutional layer uses 96 kernels of size 11x11x3 
with a stride of 4 on a 224x224x3 input image. The next layer 
operates on the pooled result from the first layer using 256 kernels of 
size 5x5x48. The third, fourth, and fifth convolutional layers are linked 
without pooling or normalization in between, with the third layer 
containing 384 kernels of size 3x3x256, the fourth layer having 384 
sets of 3x3x192 bits, and the fifth layer containing 256 sets of 
3x3x192 parts. Combined, each layer totals 4096 neurons. [14]. 
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Figure 3.2: AlexNet Architecture 
 
YOLOv5 for Object Detection 
 
The latest YOLOv5 version, "You Only Look Once," excels in quick 
and accurate object recognition in images and videos, making it 
highly effective for driving, traffic signal recognition, and surveillance. 
YOLOv5 has four versions: 5x, 5s, 5m, and 5l, each featuring a head 
section, configuration setup, and neck design. A model developed by 
experts [15]. 
 
Konala et al., (2023) provide insights into enhancing YOLOv5 based 
on improved images, as discussed by Sheng et al., (2022) [16]. A key 
aspect of the model is segmenting input images into a grid for 
analysis, predicting the number of bounding boxes in each cell and 
the likelihood of an object being present. Each bounding box includes 
five elements: a probability of containing an object, its width and 
height, and its center coordinates (x and y). The algorithm also 
predicts class probabilities for each object, indicating its category, 
such as a person, car, or dog. 
 

 

 
 
 
 
 
 
 
 
 

 

Figure 3.3: YOLOv5 Proposed Model 

 
Vehicle Detection 
 
Figure 3.4 shows models in vehicle detection. 
 

 
 

Figure 3.4: Models in Vehicle detection 
 
1) Image Acquisition 
 

 An image is typically represented as a two-dimensional function 
f(x, y), where x and y are plane coordinates. The intensity of the 
image at any given point (f) is commonly referred to as the grey 
level. To transform an analog image into a digital format for 
storage in shared and drive databases, continuous x and y 
values must be converted into discrete ones. Each digital image 
comprises finite elements known as pixels [17]. Image 

acquisition is done by using an external Video. Capturing images 
involves utilizing a video source. For this project, the operating 
system of choice is LINUX as it is known for its open-source 
nature that undergoes updates. 

 

2) Image Preprocessing 
 

 Image Resizing/Rescaling 
 

Image scaling is a common process in digital photography, 
where the size of an image is changed by adjusting the pixel 
grid. This resizing becomes essential when there’s a need to 
alter the total number of pixels. The outcome can differ 
considerably based on the algorithm used, even if the same 
resizing operation is employed [18]. 
  

 Image Enhancement 
 

Enhancing images entails modifying digital images to better 
adapt them for display or subsequent examination. For example, 
noise can be removed to facilitate the identification of important 
features. In low-contrast images, neighboring elements may 
blend during binarization. Therefore, it is essential to minimize 
the blending of these elements before applying a threshold to the 
image. This is where "Power-Law Transformation" becomes 
valuable as it enhances contrast and refines segmentation. The 
foundational version of power law transformation is: 
 

               s = cr
γ
 , (3.1)

In Formula 3.1, r and s symbolize the input and output 
intensities, with c denoting positive con-stants. Power law is 
utilized by various imaging devices for capture, printing, and 
display. The exponent in the power-law equation is commonly 
known as gamma. As a result, gamma correction is employed to 
address these power law response phenomena ensuring 
accurate image representation on computer screens. 
 

In our project, Image preprocessing functions are imported from 
Python Open CV libraries and are included in the final Python 
program. This will automatically process the image when the 
program is invoked. 
 

 Image Processing 
 

Image processing techniques are used to improve the quality 
and usefulness of images captured by various devices, such as 
cameras, sensors on space probes and aircraft, or everyday 
photographs. It covers aspects related to how images are 
represented, methods for reducing file sizes with-out significant 
loss in quality, and advanced manipulations that can be 
performed on image data. These manipulations include 
processes like improving image clarity through sharpening or 
blur-ring, adjusting brightness levels, and enhancing edges 
among others. Image processing is a branch of signal 
processing where the input is an image (e.g., photos or video 
frames) and the output may be another image or a set of 
characteristics extracted from the original one [19]. 
 

 Edge Detection 
 

The process of edge detection involves a set of mathematical 
techniques that are utilized to recognize areas in a digital image 
where there is a sudden change or disruption in brightness, 
indicating the presence of edges. These abrupt changes form 
curved lines and are crucial for tasks such as feature 
identification and extraction in fields like image processing, 
machine vision, and computer vision [20]. 
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3) Image Matching 
 

(Yamini 2022) [21] described image matching as a recognition 
method utilizing matching and involves using a prototype pattern 
vector to represent each class. When presented with an 
unknown pattern, it is assigned to the class that most closely 
resembles it according to a predetermined measure. The most 
straightforward method is the minimum distance classifier, which 
calculates the distance between the unknown pattern and each 
of the prototype vectors and selects the shortest distance for 
deciding. Another method relies on correlation, expressed 
directly in terms of images, and is quite intuitive. Our image-
matching technique entails comparing a reference image with a 
real-time image pixel by pixel. Pixel-based comparison presents 
certain drawbacks; however, it is recognized as one of the most 
effective methods for the algorithm implemented in this project 
for making decisions. The original image is stored in a memory 
matrix, and the real-time image is similarly transformed into the 
required matrix. For two images to be deemed identical, their 
pixel values within the matrix must correspond. Subsequently, 
the percentage of alignment can be expressed as in Formula 
3.2: 
 

        % match =  Number of pixels matched successfully        (3.2) 
              

total number of pixels 

 
Experimental Evaluation and Analysis of the System 
 
In our system, each frame is taken to the YOLOv5 algorithm and the 
frame is read as input through Open CV’s im read() method in 
Python. The YOLOv5 is trained using the COCO dataset which has 
about 330,000 images over 2.5 million object instances and has a 
large object collection, segmentation, and captioning collection. 
Training the YOLOv5 algorithm in the COCO dataset allows the 
algorithm to possess a much broader and more varied range of 
objects and situations, thereby improving its capacity to precisely 
identify and categorize objects [6]. The model has the coco.names file 
which contains the names of all the classes and objects that the 
system can detect on the custom detector. 
 
The image input size is set to 416 x 416 pixels. The neural network 
model and dataset are trained over 200 epochs and use a batch size 
of 150, that is, the model weights are updated after every 150 
samples are processed. The confidence threshold is set to 0.5 which 
indicates that the model must be at least 50% sure that the detected 
object belongs to a particular class (car, truck, people, etc) before it 
considers it a valid detection. 
 
Data Preprocessing 
 
The system predicts traffic conditions by using Tensor Flow to 
construct YOLO and AlexNet models with several dense layers, 
indicating a focus on capturing complex patterns within traffic data. 
Before feeding the data into the model, it is split into training and 
testing sets. Assessing the model’s performance post-training by 
comparing predicted and real traffic situations showcases how well 
the model can forecast traffic trends. 
 
 Dataset Processing 
 

 It is crucial to prepare the dataset before starting to ensure its 
compatibility with models. Tasks such as improving, organizing, 
and isolating components are some examples of actions that can 
enhance the accuracy and quality of the data used in training 
models. 

 Splitting the Dataset for Training and Testing 
 

 It is common in AI practices to split the dataset into training and 
testing sets for model evaluation. Our approach involves 
converting a Data Frame into an array simplifying data 
processing. To distinguish features and labels for model training 
and evaluation, the dataset is divided 90-10 into training and 
testing subsets respectively. The setup designates the column 
as a label and the first four columns of the dataset as predictors. 
This step is crucial to demonstrate how an AI model learns from 
the training set without exposure to test data. The training set is 
utilized to educate the model by allowing it to analyze the 
information while the testing set is employed to assess how well 
the model performs with data. 

 

 Training and Testing Sets 
 

–  Training Set: This segment making up 90% of the dataset is 
usually bigger. It is used to teach the model and helps the 
algorithms understand the patterns and relationships in the 
data. 

–  Testing Dataset: The testing subset, constituting the 
remaining 10% of the data collection, plays a critical role in 
assessing the model’s capacity for generalization. This 
portion facilitates an impartial evaluation of the model’s 
performance with new data and showcases its ability to 
forecast traffic conditions outside the training set accurately. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.5: Code showing the Creating, Training, and Testing of 
Datasets 
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Performance Metrics of YOLOv5 
 

The performance of each trained YOLOv5 model was evaluated 
using metrics such as accuracy, precision, recall mean average 
precision (mAP), and F1 score which are determined through 
calculations. Formula 3.3 represents Accuracy, Formula 3.4 
Precision, Formula 3.5 Recall, Formula 3.6, and Formula 3.7 
represents mean average precision. 

 

 
 

In the Formulas above, the scenario TP represents the count of 
predictions TN stands for the count of accurate negative predictions, 
FP indicates the count of incorrect (false) positive predictions, FN 
denotes the count of incorrect negative predictions, APk signifies the 
average precision (AP), for class k and n represents the number of 
confidence thresholds which is set at 0.5 or 50% [22]. 
 

Figure 3.6 represents graphs depicting the Accuracy, Precision, 
Recall, mean average precision (mAP), and f1-score trained over 200 
epochs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.6: Graphs showing performance metrics of Accuracy, 
Precision, Recall, mean average precision (mAP), and f1-score 

obtained after training YOLO over 200 epochs. 
 
Performance Evaluation 
 

The system’s performance is evaluated by training the YOLOv5 and 
AlexNet neural networks to anticipate traffic outcomes. The mean 
squared error is used as the loss function throughout the training 
procedure. An independent test dataset is used to validate the 
model’s potential for generalization. The trained model is tested using 
the test data (test_predictors and test_labels), yielding a final 
performance metrics. The model’ s efficacy is further validated by 
comparing anticipated values to actual values using visual 
representations, demonstrating its accuracy in forecasting appropriate 

traffic cycle lengths. The test set is used to check the model’s 
accuracy, and the precision is evaluated by comparing displayed and 
real optimal time cycles in bar graphs which will be shown in the 
implementation phase of the project. 
 
Experimental Results 
 
After training and testing, the model and the size of the datasets are 
determined. The threshold helps to filter out weaker detection and 
reduce false positives, improving the overall accuracy of the object 
detection process. After 200 training epochs, the model’s predictions 
are visually evaluated against actual values through line plots to 
demonstrate its efficacy in estimating optimal traffic light cycles. Non-
maxima suppression is applied to the images to reduce redundancy 
among detected bounding boxes. Only the strongest bounding box is 
retained when multiple boxes overlap significantly and detect the 
same object. The weaker overlapping detection is eliminated, making 
sure each detected object is represented by a single bounding box, 
improving the result’s accuracy and clarity. 
 
The validation data set limits the batches of samples analyzed per 
epoch to 100. It provides test data for evaluating model performance 
at the end of each epoch. There is a limit on the number of validation 
batches that can be run. This setup helps monitor how well the model 
is learning and its ability to adapt to inputs. 
 
This application includes components related to traffic control 
systems such as data collection, analysis, and display aimed at 
improving traffic flow. To effectively manage traffic signals involves 
creating datasets from traffic images, analyzing the vehicle density 
and types in the area, and utilizing this information. By using a state 
machine that adjusts signals based on real-time traffic data, the 
system mimics the functionality of traffic lights. 
 
Additionally, we utilize tools like Matplotlib for visualization, Pandas 
for data manipulation, and techniques from the Image Processing 
module to study car types and traffic density in images. Through 
image processing algorithms applied to a series of photos, results are 
compiled into a CSV file. It also can generate graphs depicting lane-
by-lane vehicle counts, traffic flow patterns, and optimal cycle 
duration. These functionalities offer insights into traffic behaviors and 
congestion issues that can aid in making decisions, for effective 
management of traffic signals. 
 
In the model, regression is depicted as a function that connects the 
output (y) to input features (X). We use weights (w) and biases (b) at 
all levels of the model along with activation functions like ReLU in 
layers to predict the target value y. Ultimately, it produces a value as 
the prediction. During training, the model adjusts weights and biases 
to reduce the squared error between predicted values in the dataset. 
The formula for the regression can be represented as: 
 

y = f(W3(ReLU(W2(ReLU(W1X +b1)+b2))+b3)      (3.8) 
 
The formula represents a feed forward neural network with two 
hidden layers and an output layer where: 
 
X = [X1, X2, X3, X4] represents the input features. W1, W2, W3 are 
the weight matrices for each layer. b1, b2, b3 are the biases for each 
layer. ReLU(x) = max(0, x) is the Rectified Linear Unit activation 
function used in the first two dense layers. f (x) is the identity function 
in the output layer since it is a regression task. yˆ is the predicted 
output. 
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Formula 3.8 is the computation used in the hybrid system. YOLOv5 
analyses full pictures in a single forward pass, predicting bounding 
boxes and class probabilities for objects using several convolutional 
layers and ReLU activation. This feature enables real-time recognition 
of cars and people, which aids in traffic flow monitoring and 
congestion detection. AlexNet, used for image recognition also 
employs convolutional layers and ReLU activations for feature 
extraction and classification. AlexNet can classify various vehicle 
kinds and analyze traffic patterns in a hybrid system. 
 

The model has been trained to minimize the loss function, specifically 
by reducing the mean squared error between the predicted outputs 
and the actual labels. This error aids in the adjustment of the model’s 
parameters, hence improving predictions. 
 

The mean-squared loss function determines the difference between 
the model’s predictions and the actual labels. This inaccuracy aids in 
adjusting the model’s parameters, hence improving predictions. 
Labels are the known output or goal values that the model attempts to 
predict. Labels are required for supervised learning, and the purpose 
is to teach the model to generate predictions based on input data. 
The labels are the proper responses or outcomes for each example in 
our dataset. It is used in the classification and regression tasks to 
classify the datasets of images of vehicles. 
 
Figure 3.7 shows the sample of images used to train the dataset. 
Figure 3.8 shows the images detected in real-time after the training 
and testing. 
 

 
 

Figure 3.7: Sample of Images Used to train the dataset 
 

 
 

Figure 3.8: Vehicle Detection in real-time with Vehicle label 
 

Traffic Prediction 
 
We test the system with four-lane samples in our model. After 
comparing four lanes, the lane with the most cars is given a green 
signal at that particular timeframe. For the subsequent timeframe, this 
process is repeated as shown in Table 3.1. 

 
Table 3.1: Traffic Predictions and Green Signal Activation 

 

Lane Numbers and Car 
Count 

Prediction 
 

Green Signal 
 

Lane 1: 10, Lane 2: 25, 
Lane 3: 30, Lane 4: 42 
 

Lane 4 has the most 
vehicles 
 

The green signal 
turned on 
for lane number 4 

Lane 1: 60, Lane 2: 18, 
Lane 3: 42 
 

Lane 1 has the most 
vehicles 
 

The green signal 
turned on 
for lane number 1 
 

Lane 2: 20, Lane 3: 39, 
Lane 4: 25 
 

Lane 3 has the most 
vehicles 
 

The green signal 
turned on 
for lane number 3 
 

Lane 1: 76, Lane 2: 90, 
Lane 4: 46 
 

Lane 2 has the most 
vehicles 
 

The green signal 
turned on 
for lane number 2 
 

Lane 1: 104, Lane 3: 52, 
Lane 4: 65 
 

Lane 1 has the most 
vehicles 
 

The green signal 
turned on 
for lane number 1 
 

 

SYSTEM ANALYSIS AND DESIGN 
 

System Requirements 
 
According to Tilley (2019), a system requirement is a characteristic or 
feature that must be included in an information system to satisfy 
business requirements and be acceptable to users. System 
requirements serve as benchmarks to measure the overall 
acceptability of the finished system [23]. 
 
Mahalank et al., (2016) stated that the design of any AI or IoT-based 
system is rooted in two perspectives: Requirement Analysis. The 
initial perspective revolves around Functional Requirements which 
relate to the functions that the AI or IoT-based Traffic Density 
indicators can execute as a system. The second outlook includes 
Non-Functional Requirements, which denote the characteristics that 
enhance brand value for the design unit [24]. 
 
1) Functional Requirements 
 

Functional requirements outline the activities, procedures, and 
capabilities that the system is expected to execute. The 
functional requirements of the system are: 

 
 Design a user interface that is intuitive and easily 

accessible for individuals with varying degrees of technical 
knowledge. 

 Real-Time Traffic Monitoring: The system needs to 
consistently monitor traffic conditions with cameras and 
sensors, and process data in real-time. 

 Utilize YOLOv5 to accurately detect and categorize objects 
in the traffic, including automobiles, pedestrians, and 
cyclists, and AlexNet V3 for detailed classification such as 
identifying vehicle types and recognizing license plates. 

 Traffic Flow Optimization: Analyzing traffic information to 
pinpoint congestion and adjust traffic light timing can 
improve traffic flow and minimize bottlenecks. 

 Incident Detection and Response: Automatically identify 
road accidents or incidents and notify traffic management 
centers and emergency services. 

 Implement AI-powered analysis to forecast traffic trends, 
detect bottlenecks, and recommend the best routes for 
drivers. 

 Offer a complete user interface for traffic operators that 
combines real-time data representation, notifications, and 
the ability to manually intervene in AI decisions. 

  

(a) Software Requirements Specifications 
 

 PYTHON LANGUAGE 
 ANACONDA IDE 
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(b) Hardware Requirements Specifications 
 

Table 4.1 shows the hardware requirements specifications of the 
system. 

 

Table 4.1: Hardware Specifications 
 

Hardware Components Specification 

System Pentium Dual Core 
 

Hard Disk 120 GB 

Monitor 15’’LED 

Input Devices Keyboard, Mouse 

RAM Minimum of 4 GB 

 
2) Non-Functional Requirements 
 

 The non-functional requirements outline the functioning of the 
system, emphasizing quality characteristics, efficiency, and 
operational criteria. 

 

 High level of precision in object detection and 
categorization while reducing incorrect identifications and 
missed detections. The system must maintain a reliability of 
99.9% uptime for consistent functionality. 

 The system should grow and encompass additional areas 
without a decline in performance. 

 Real-time processing allows for the rapid detection and 
categorization of objects, facilitating prompt decision-
making in traffic management. Also, ensure that all 
methods of surveillance and data collection adhere to 
privacy laws and ethical standards. 

 Ensure seamless integration with current traffic 
management infrastructure and emergency response 
systems to guarantee compatibility and interoperability. 

 

System Architecture 
 
Hardware Architecture 
 
The suggested framework involves Raspberry Pi linked to four groups 
of LEDs, which simulate the traffic signals. The captured images and 
the reference images are fed manually to the Raspberry Pi currently. 
We have incorporated the Raspberry Pi model 3 into this setup [25]. 
The Raspberry Pi serves as the controller for the system. To manage 
the lighting, it employs a Python service that starts automatically. It 
captures an image and compares it with the one. If there is traffic on a 
road at the intersection compared to others, that road will be given 
priority and have a longer green light duration determined by the Pi 
based on matching rates with the reference image. For analysis 
purposes, the Pi also transmits data to the cloud. The location of the 
signal percentage of matches in each image and timestamps of when 
photos were taken are all included in the data provided in format. 
Software Architecture 
 

The proposed model makes use of Open CV which allows companies 
to conveniently incorporate and adapt the code according to their 
requirements. The library contains a vast collection of over 2500 
advanced algorithms, encompassing both traditional and cutting-edge 
techniques in computer vision and machine learning. It is compatible 
with Windows, Linux, Android, and Mac OS, and it provides interfaces 
for C++, C, Python, Java, and MATLAB. It is primarily designed for 
real-time vision applications and makes use of MMX and SSE 
instructions whenever possible. Developed in C++, Open CV also 
includes a templated interface that integrates smoothly with STL 
containers [26]. 
 

 

Modules of the System 
 
1) Image Acquisition Module 
 

 Image acquisition is accomplished through the use of an external 
video or videos saved in the path folder of the project. The 
operating system utilized in our project is LINUX, which is an 
open-source program that is often updated. 

 

2) Image Preprocessing Module 
 

 Image preparation processes are imported and loaded from the 
Python Open CV libraries and used in the final Python program. 
When you run the program, the image will be processed 
automatically. 

 

3) Object Detection Module 
 

 In our current study, fundamental components of image analysis 
include edges, lines, and points, with a focus on edges. Our 
research employs an object detection approach for image 
alignment, where the method identifies pixels within the image 
that align with the shapes of depicted objects. This process 
culminates in the generation of a binary image highlighting the 
detected object. 

 

4) Vehicle Count Module 
 

 The process of vehicle counting commences with establishing a 
baseline image depicting an unoccupied road, which is stored in 
memory for reference. Subsequently, images captured from the 
four lanes undergo comparison with the reference image to 
ascertain the density of vehicles present and it is facilitated 
through the utilization of the Object Detection Module. 

  
5) Light Control Module 
 

 After the vehicle detection process, reference and real-time 
images are compared to facilitate traffic light control by 
considering the number of vehicles in each lane. Varying 
durations for activating the green light are applied based on the 
number of vehicles. Initially, the minimum green light on time is 
set to 10 seconds for all lanes. At the point when lane 1 has 
more vehicles than other lanes, the green light is turned on for 
the lane longer. This process will continue checking for the lane 
with the heaviest traffic and allocating more time to it for smooth 
traffic flow. 

 

6) Traffic Prediction Module 
 

 The system uses the AI framework Tensor Flow to analyze real-
time traffic data. This part uses data analysis and scenario 
prediction to create traffic pattern models by utilizing Tensor 
Flows capabilities. During this procedure, databases containing 
data on traffic volume, speed, and congestion levels are used to 
train AI models. The system can therefore predict traffic 
conditions. Make suggestions for efficient traffic signal tactics. To 
lessen traffic and improve overall traffic flow efficiency, traffic 
light management is implemented with the help of the predictive 
feature. 

 

Feasibility Study 
 
Before implementing a system, the organization, stakeholders, and 
developers need to evaluate the pro-posed system’s feasibility cost, 
effectiveness, acceptance, and ability to enhance traffic management 
and road safety. 
 

The feasibility study is particularly useful in thoroughly assessing the 
effectiveness of the proposed system in addressing the challenges 
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and requirements of urban traffic management and the evaluation 
goes beyond considerations such as market readiness, technological 
infrastructure prerequisites, financial sustain-ability, and potential 
socio-economic impacts. 
 

The key considerations involved in the feasibility study include: 
 
1) Technical Feasibility: To evaluate the technical feasibility of this 

project, a series of issues are considered when doing this study: 
 

 Assessing the present status of AI technologies applicable 
to traffic control and road safety, including examining the 
effectiveness of machine learning models, image 
processing methods, and real-time data analysis 
approaches in tackling traffic challenges. 

 Quality data is essential for training AI models, such as 
information on traffic patterns, incident records, and 
meteorological factors, which should be easily obtainable 
and reachable. 

 Supporting the implementation of AI solutions requires 
essential infrastructure such as traffic cameras, sensors, 
and computational capacity. 

  

2) Economic Feasibility: In this study, the economic impact the 
system has on stakeholders is investigated. Investing in a cost-
effective traffic management system will go a long way. The 
amount to be spent on the system is limited; procurement cost, 
which includes the cost of equipment like the traffic cameras, 
installation, and the cost of training users. The expenditure must 
be justified, and some of the technologies used in the developed 
system. Since the system will be deployed in a cloud, the update 
of the system will be done by service providers. The 
maintenance of hardware and training of individuals to get 
familiar with the system. 

 

3) Social Feasibility: this part of the study explores the perception 
and acceptance of the system by road users, governments, and 
different stakeholders. It is important to keep in mind the process 
of training users on how to use the system. The users’ 
willingness to adopt the system relies on their level of 
understanding and familiarity with its operations. Purchasers 
must consider the framework as essential as opposed to 
surveying it as a reason to worry. 

 

System Design 
 

System design is a way of outlining the structure, elements, sections, 
interfaces, and information of a system to satisfy particular needs. It 
entails the transformation of user requirements into a detailed 
blueprint that guides the implementation phase. The objective is to 
improve traffic flow, reduce travel times, enhance safety, and support 
emergency response by coming up with an intuitive functional 
structure that meets the task at hand whilst putting performance, 
maintenance, and sustainability into account. This chapter’s purpose 
is to describe the system’s design phase. 
 
UML Diagrams 
 
UML diagrams are designed to help us and users understand 
complicated software systems’ concepts, code architecture, and 
potential implementations. Information about the system is converted 
into a graphical representation that is easier to read and comprehend. 
It adopts a standardized procedure for creating a system model and 
documenting conceptual theories as well. They assist developers in 
seeing the big picture of the system, as well as readers and people 
without programming experience in understanding software 
processes and operations. 

Use Case Diagram 
 
A use case diagram is a graphical representation of a user’s potential 
interactions with a technology. This definition of a use-case diagram 
is close to that of Yamini (2022) [21] who defined it as a form of 
behavioral diagram specified by and built from a use-case analysis 
whose objective is to offer a graphical picture of a system’s 
performance in the form of actors. Its primary goal is to demonstrate 
which system functions are executed by which actor, as shown in 
Figure 4.1. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 4.1: Use Case Diagram 
 
Class Diagram 
 
This diagram showcases how the Traffic Light Controller, Vehicle 
Detection System, and Traffic Data Analysis Module work together to 
improve traffic flow. Demonstrate that the Traffic Operator, System 
Administrator, and Public User classes are derived from the User 
Interface class. This demonstrates common characteristics while 
highlighting their distinct functionalities. Also, specify that the Traffic 
Data Analysis Module could consolidate data from the Vehicle 
Detection System as well as other sources for analysis. Depict 
interconnections between classes such as the User Interface class 
depending on the Database class to store and retrieve user 
preferences and traffic data as shown in Figure 4.2. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.2: Class Diagram 
 
Component Diagram 
 

This diagram offers an overview of the software components and their 
relationships within the system. Component diagrams illustrate 
implementation details and are crucial during the application’s 
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implementation phase, impacting effectiveness and maintenance. 
Identifying system files, libraries, and relevant components, along 
with their interactions, is essential (Yamini 2022) [21]. 
 

The system performs critical functions like collecting traffic data, Data 
Processing, and recognition and categorization of vehicles. The 
Traffic Prediction tool anticipates patterns using historical and real-
time data, and Traffic Control adjusts signals based on these 
predictions. A user interface enables traffic operators and 
administrators to monitor conditions and make modifications. The 
Database stores processed and raw data, configurations, and past 
traffic records, as shown in Figure 4.3. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.3: Component Diagram 
  
Deployment Diagram 
 

Figure 4.4 shows the system’s execution across hardware and 
network resources, highlighting key component interactions. [21] 
defines a deployment diagram as nodes representing hardware for 
application deployment, crucial for scalability, maintenance, and 
portability. 
 
 
 
 
 
 
 

 
Figure 4.4: Deployment Diagram 

 

Database Design 
 

The database structure and design facilitate the core operations of 
our traffic management system, such as collecting and analyzing 
data, identifying and categorizing vehicles, predicting traffic patterns, 
prioritizing emergency vehicle access, and managing user roles as 
shown in Figure 4.5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.5: Database Design 

Entity Relationship Diagram 
 
The ER diagram of our system shows different entities and specifies 
the entities, attributes, and relation-ships that exist between them. 
Our ER diagram has entities that are represented by key components 
such as the system, traffic data, vehicle, traffic prediction, and 
emergency vehicles as shown in Figure 4.6. 

  
 
 
 
 
 
 
 
 
  

 
 
 
 
 
 
 
 
 
 
 

Figure 4.6: ER Diagram 
 

Proposed System Architecture 
 
The use of the system starts with data collection from traffic cameras 
installed alongside traffic lights. The different modules of the system 
in Figure 4.7 are discussed in previous chapters. The videos are 
converted to frames, and images are put into the machine learning 
models (YOLOv5 and AlexNet V3) to detect vehicles in the images 
and identify, classify, and count them. Tensor Flow is employed to 
analyze data and predict traffic conditions. The predictions are used 
to adjust traffic signals accordingly. The user interface allows different 
users and provides them with access to traffic data and system 
controls. The number of vehicles on each lane and their labels are 
displayed, and datasets of the different lanes, graphs, and the view of 
the road can be viewed in the user interface. With the conda 
package, switching from different pages in the system is easy. 
  
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.7: Overview of the Proposed System Architecture 

 
Flow Chart of System Architecture 
 

This flowchart 4.8 shows the different stages involved in the traffic 
management system from how videos are captured and processed 
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using YOLOv5 for vehicle detection and labeling, further classified by 
AlexNet V3 where detected emergency vehicles are given priority to 
pass. Other traffic conditions are analyzed to predict traffic flow using 
Tensor Flow models. Forecasts such as this, real-time analysis, and 
comparison of the number of vehicles in each lane are used to 
manage and change traffic lights. 
  

 
 

Figure 4.8: Flow Chart Showing Processes involved in the Traffic 
Management 

 

GUI (Graphical User Interface) 
 
Our system makes use of Tkinter for the design of the GUI as it is a 
standard Python GUI library that provides an easy approach to 
developing GUI programs. Its inclusion in Python makes it accessible 
and simple to use. Its main advantage is it offers a variety of widgets 
for creating interfaces. The GUIs that are created show AI-detected 
objects, offer graphs and insights on traffic patterns, and enable 
manual or AI-assisted adjustments of the traffic lights just to name a 
few. The figure below shows a simple GUI of the system: 
 

The GUI consists of: 
 

 Traffic specification functions inter-green period, amber period, 
number of phases, initial delay, mini-mum time, the width of the 
four lanes, maximum cycle time, size of the dataset, and number 
of iterations. 

 buttons that provide different views; Test image processing, run 
the traffic system, show the view of the road, create and display 
datasets, and data visualization. 

 buttons to import the input folder and the output folder that 
contains the frames and images used in the system. 

 
The traffic specifications can be changed and given different values. 
  

IMPLEMENTATION AND TESTING OF THE 
SYSTEM 
 
The implementation stage of the system development life cycle 
entails transforming the system design into a fully operational and 
functional system. It involves all tasks associated with converting 
conceptual, architectural, and detailed designs into an active solution. 
Implementation acts as a link between the planned structure and 
functionalities and the practical realization and utilization of the 
system in an operational environment. 
 

This phase is very important in the creation of the system. It includes 
testing and working with different videos, images, and datasets as 
well as releasing the system to its intended users and putting it to 
work in a real-world scenario. The result of this stage is dependent on 
testing, engaging with stakeholders, and verifying that the website 
adheres to all specified demands in advance of and following 
deployment. 
 

Report of the System 
 
 It generates Datasets of different specifications used in the 

system 
 You can easily save the Dataset and export it into CSV format. 
 The traffic data can be represented in graphical format and 

saved to analyze traffic. 
 

Testing 
 
Unit Testing 
 
Unit testing is a software testing approach to evaluate individual 
components or modules, ensuring they meet requirements and 
function correctly. Each field entry, page link, initial screen, and 
message response must work without delay (Yamini 2022) [21]. 
 
Our model confirms that the correct input and output folders are 
selected in the proper format—input for video frame images and 
output for trained models. Users should access the correct page, edit 
specifications, and upload folders without screens, buttons, or image 
loading delays. 
 
Result: All buttons and links work correctly. There are no delays in 
loading the buttons and images. 
 
1) Uploading Input and Output Folders 
 

 A unit test was conducted to test the outcome of not uploading 
the correct image input and output folders. This resulted in the 
system not working. 

 

2) View output of Image Processing 
 

 The image processing algorithm’s output was empty without 
uploading the right folders. When the right input and output 
folders are selected, the image processing algorithm output 
shows the images. 

 

3) Dataset Size 
 
 

 The dataset size was tested with different numbers of frames set 
in the traffic parameter specifications (50, 75, 100). The results 
obtained from the test are the exact size of the dataset specified 
in the traffic parameter specifications. 

 
Integration Testing 
 
Integration testing ensures the smooth functioning of modules or 
programs requiring interaction without errors. It validates that the 
interfaces and connections between different system components are 
working as intended. After passing individual unit tests, integration 
testing focuses on assessing the control flow among modules and the 
exchanged data. This type of testing follows procedures similar to unit 
testing, such as creating a test plan with a series of tests, and is 
usually conducted by programmers and/or systems analysts. 
Integration testing often involves four approaches: user interface 
testing, use scenario testing, data flow testing, and system interface 
validation (Dennis 2009) [27]. 
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System Testing 
 
System testing is crucial in the software development lifecycle, 
ensuring the fully integrated system meets specific requirements. It 
aims to identify faults and ensure error-free operation before launch, 
instilling confidence in quality and reliability. Comprehensive testing 
reduces the likelihood of malfunctions and facilitates a smooth 
transition to operational use. This phase occurs after unit and 
integration testing but before production deployment, with the primary 
goal of verifying that the system adheres to its intended design and 
performs as expected in real-world scenarios. 
 
White Box Testing 
 
White box testing involves analyzing the framework’s engineering and 
programming to evaluate how well vehicle recognition algorithms like 
YOLOv5 ensure identification under various conditions. It examines 
all possible combinations of conditions, loops, and code paths to 
ensure coverage and functionality. This testing also identifies 
overlooked issues, such as traffic patterns or unexpected problems, 
while focusing on security by detecting weaknesses that could 
compromise the system’s integrity. It thoroughly assesses the 
system’s performance, emphasizing speed and accuracy in vehicle 
identification and traffic forecasting. 
  
Black Box Testing 
 
Black box testing is one procedure for evaluating the framework’s 
usefulness. It's essential spotlight is on client cooperation. anticipated 
that results interestingly, should be the inside pecking order of codes. 
The most common way of checking that the framework can precisely 
distinguish, characterize, and change traffic lights for different vehicle 
types and traffic situations starts with testing. User interface testing 
ensures that traffic administrators can undoubtedly view and utilize 
the framework to simply decide. Execution testing surveys the 
framework’s ability to handle enormous measures of traffic 
information and convey the necessary answers for testing 
circumstances. 
 
Functional Testing 
 

Each function in the program is tested to ensure compliance with all 
standards and concepts. Every capability is examined by inputting 
data and verifying that the output meets predetermined criteria. The 
primary goal of testing is to assess whether the program operates 
according to its specifications, including input/output verification, user 
interface, database interactions, and API functionality. Various 
methodologies are employed, such as unit, smoke, integration, 
system, and sanity tests. The process involves creating test cases 
based on requirements, establishing a test environment, executing 
tests, recording defects, and retesting to identify functionality gaps, 
errors, or unexpected behavior while ensuring adherence to specified 
requirements. 
 
The functional test of our system is focused on: 
 

 making sure there are valid inputs. That is to say, only valid 
inputs are accepted in the system. 

 invalid inputs will result in errors, and the system will not function 
normally. 

 the indicated classes of application outputs must be exercised. 
 
Table 5.1 shows the functional testing of the system with each 
iteration on different lanes. 
  
 

Table 5.1: Functional Testing of the System 
 

Traffic 
Density 
 

Number of 
Vehicles and 
Traffic 
flow 

Lane 
1 
 

Lane 
2 
 

Lane 
3 
 

Lane 
4 
 

Total 
Time 
for one 
Iteration 

No traffic 
 

The minimum 
green light on 
time 
is set to 10 
seconds 
for all lanes 
 

10 
sec 
 

10 
sec 
 

10 
sec 
 

10 
sec 
 

40 sec 
 

Lane 1 has 
more 
vehicles 
than the 
other lanes 
 

19 vehicles 
with a traffic 
flow of 69.25 
 

34 
sec 
 

10 
sec 
 

10 
sec 
 

10 
sec 
 

64 sec 
 

Lane 2 has 
more 
vehicles 
than the 
other lanes 
 

21 vehicles 
with a traffic 
flow of 82.25 
 

10sec 
 

39 
sec 
 

10 
sec 
 

10 
sec 
 

69 sec 
 

Lane 3 has 
more 
vehicles 
than the 
other lanes 
 

21 vehicles 
with a traffic 
flow of 64.0 
 

10 
sec 
 

34 
sec 
 

10 
sec 
 

10 
sec 
 

64 sec 
 

Lane 4 has 
more 
vehicles 
than the 
other lanes 
 

19 vehicles 
with a traffic 
flow of 70.25 
 

10 
sec 
 

10 
sec 
 

10 
sec 
 

34 
sec 
 

64 sec 
 

 
User Acceptance Testing 
 
According to Yamini (2022), User Acceptance Testing (UAT) is crucial 
for any project and requires significant end-user involvement. End 
users, such as traffic controllers, test the intelligent traffic control 
system to ensure it meets operational requirements and user 
expectations in real or simulated scenarios. This testing confirms the 
system’s performance, including vehicle identification accuracy, 
improved traffic flow, and interoperability with existing infrastructure. 
Feedback from UAT leads to final adjustments to align the system 
with its goals. The UAT results indicate that all test cases passed, 
confirming the system’s readiness for deployment and its capability to 
enhance traffic control and safety measures. [21]. 
 

Description of Modules of the System 
 
1) First Page: Figure 5.1 is the first page accessed after the user 

runs the ’main.py’ file in the terminal of the project in the 
Anaconda navigator. 

  
 
 
 
 
 
 
 
 
 

 
 
 

Figure 5.1: First Page 
 
2) Traffic Specifications: Figure 5.2 shows buttons that, when 

clicked, will let us set the traffic specifications for editing and 
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changing the values to our preferred specifications. For example, 
the initial dataset size is set to 100 frames, which means 100 
minutes of traffic is considered. The number of iterations as well 
as everything else can be edited to fit the user’s demands. 

 
 
 
 
 
 

 
 
 

Figure 5.2: Traffic Parameter Specifications 
 
3) Image Processing Algorithm: Before testing the image 

processing algorithm, the input folder that contains the images 
that were gotten from the video frames must be selected. The 
output folder must be selected too. After setting the input, output 
folders, and traffic specifications, the image processing algorithm 
can be tested. The system is going to test with one image which 
it will choose randomly from the images that were gotten from 
the frames converted from the videos captured. The actual 
image is compared to the reference image and the total number 
of vehicles detected is shown along with the labeling of the 
vehicles. 

  
 

 
 
 
 
 
 
 
 

Figure 5.3: Process Image 
 
4) Run Intelligent Traffic Manager: the detection of the total number 

of vehicles in each lane will lead us to run the traffic manager. 
This will compare the total number of vehicles in each lane 
turning on the green light to the lane with the heaviest traffic. 
Figure 5.4 shows lane 1 has 20 vehicles detected, thus a time of 
34 seconds was allocated to that lane. 

 
 
 
 
 
 
 
 

 
 
 
 

Figure 5.4: Traffic Light Control 
 
5) Road View: Figure 5.5 shows different lane structures and 

shows the number of vehicles on each lane. This will be updated 
based on the files uploaded. Traffic lights will work on each lane 
depending on the vehicle density of the lanes and give priority to 
the lane with the most vehicles. 

  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.5: Road View 
 

6) Create Dataset: Figure 5.6 shows the dataset of all the vehicles 
given along with the number of vehicles in each lane, traffic flow, 
optimum cycle time, delay time, etc. The size of the dataset is 
affected by the number of frames set in the specifications, which 
was set to a hundred minutes. Due to this, the dataset will be 
created and generated for all the data of 100 minutes. The 
dataset can be saved and this will create a CSV file where all the 
data will be stored. 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.6: Creating Dataset 
 
7) Display Dataset: Figure 5.7 shows the created and saved dataset 
displayed on the page. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.7: Displaying Dataset 
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8) Data Visualization: Under this, different parts of the system are 
represented in a graphical view for traffic analysis as shown in 
Figure 5.8. It consists of the number of vehicles in each lane, 
traffic flow in each lane, green light time, traffic flow ratio, total 
traffic flow, and optimum cycle time. 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.8: Data Visualization 

 
9) Number of vehicles in Each lane: Figure 5.9 entails graphs 

showing the number of vehicles in each lane in the 100-minute 
time frame that was given. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 5.9: Graphs of Lanes 
 
10) Total Traffic Flow: The Figure 5.10 shows the flow of traffic on 

each lane. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.10: Traffic flow 
 

11) Optimum Cycle Time: The optimum cycle time shows how much 
priority is given to each lane in each second. This can be 
compared to how much traffic the system has reduced compared 
to the existing system. 

  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.11: Cycle Time 
 
12) Green Light On Time in Each Lane: Figure 5.12 depicts graphs 

showing how much time the vehicles on each lane waited. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.12: On Time 
  

CONCLUSION AND FUTURE WORK 
 
This thesis provides insight into how artificial intelligence can improve 
traffic control and safety. It highlights the potential of using YOLOv5 
and AlexNet V3 models to enhance traffic flow and safety measures, 
demonstrating the feasibility of integrating AI into urban traffic 
management. The main goal was to address road traffic accidents 
caused by negligent driving and congestion from increasing 
population and vehicles, developing a model to enhance road safety 
and traffic management. The research shows how AI can 
revolutionize traffic management by providing forecasts, accurately 
categorizing vehicles, and dynamically adjusting signals to reduce 
congestion and prevent accidents. 
 
Future studies should assess the long-term effects of enhancing the 
traffic control system by broadening the dataset and exploring neural 
network models for improved accuracy, focusing on real-time traffic 
management to ease congestion. Integrating the system with online 
platforms can provide up-to-date traffic information and prioritize 
emergency vehicles, influencing planning and infrastructure upgrades 
for safety and efficiency. Public engagement is essential for system 
improvement, considering reduced emissions from optimized mobility. 
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The system does not work up to expectations in low-light conditions. 
Overcoming this would require switching over to a hard-coded system 
or night vision cameras could be installed to keep the dynamic 
system working at night. 
 
The system’s scalability can extend beyond urban areas, addressing 
data collection challenges. Although the algorithm performs well in 
daylight, it struggles in low-light conditions. Data augmentation 
techniques and methods like illumination maps can enhance 
performance. Finally, low vehicle volume on one side may lead to 
longer wait times, which should be addressed in future plans. 
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