
International Journal of Innovation Scientific Research and Review

Vol. 06, Issue, 11, pp.7338-7352, November 2024

Available online at http://www.journalijisr.com

SJIF Impact Factor 2023: 6.599

Research Article

ISSN: 2582-6131

DEVELOPMENT AND APPLICATION OF AN INTELLIGENT TRAFFIC MANAGEMENT SYSTEM
BASED ON YOLOV5 AND ALEXNET V3 FOR ROAD SAFETY ENHANCEMENT

1, * Isatou K Njie, 2Yongqian Sun, 1Olumayowa O. Adedara, 1Oyeleke Samuel Oluwafemi

1MSc Software Engineering (College of Software), Nankai University, Tianjin, China.

2Professor, College of Software, Nankai University (Supervisor), Tianjin, China.

Received 11th September 2024; Accepted 12th October 2024; Published online 30th November 2024

ABSTRACT

Traffic congestion is a growing issue, especially in urban areas, requiring improved real-time traffic monitoring to enhance signal control and overall
management. This research presents an intelligent traffic management system that optimizes traffic light operations based on real-time traffic density. Using
image processing techniques with YOLOv5 and AlexNet V3, live camera feeds are analyzed to detect vehicles, monitor lanes, and adjust signal timings. This
approach reduces congestion, improves road safety, and streamlines traffic flow. Python Open CV libraries and the Anaconda IDE were used to design and
implement the system, ensuring efficient real-time data analysis for traffic management.

Keywords: Road safety; traffic management; image processing; YOLOv5; Alexnet V3 Convolutional, Neural Network.

INTRODUCTION

Urban transportation challenges are a global issue that impacts us
daily, and many developing nations grapple with various difficulties
related to traffic control, traffic management, and road safety. These
obstacles encompass insufficient infrastructure, the absence of traffic
monitoring systems, and limited resources for efficient traffic
management.

The case study of The Gambia illustrates these challenges. Like
many developing nations, the Gambia is dealing with traffic
management and road safety challenges due to population growth,
increased vehicles, and diverse road infrastructure. The inadequacy
of proper roads contributes to frequent traffic accidents and
congestion. Additionally, many urban areas face issues with fixed
time cycles for intersectional traffic signals. Small activities, such as
stopping a vehicle at an intersection or a vehicle breaking the traffic
signal, cause a chain reaction that ultimately prompts colossal car
influxes. This is confirmed in a study done by Dr. Gabor Oros z of the
University of Exeter [1].

Effective management of vehicular movement is crucial for reducing
congestion, safeguarding road users’ well-being, and maintaining
overall road safety. Conventional traffic management systems often
strug-gle to handle growing congestion levels, leading to longer travel
times, increased fuel consumption, and higher pollution levels. Fresh
approaches are required to successfully address the limits of manual
monitor-ing. According to research, artificial intelligence can efficiently
address transportation concerns such as traffic management, safety,
public transit, and urban mobility.

The existing traffic light system has a defined length and requires
manual involvement from police officers to make changes. This
approach is not very helpful since it relies on physically capturing
offenders, which causes more congestion. Utilizing available

*Corresponding Author: Isatou K Njie,
1MSc Software Engineering (College of Software), Nankai University, Tianjin,
China.

information and data can lead to smarter services that enhance living
conditions. An improved approach would involve determining signal
times based on the number of cars crossing the intersection. If there
is a higher volume of cars in a particular lane, the signal duration will
be extended to alleviate congestion.

This paper aims to comprehensively study and explore how cutting-
edge smart technologies integrated with data-driven insights can
transform traffic management and enhance road safety. It suggests
leveraging image processing from surveillance cameras and
implementing a feedback mechanism in traffic light operations that
considers traffic density during peak times.

Overall, this paper provides the following contributions:

 Development of an intelligent traffic management system
utilizing AI technologies for real-time traffic monitoring and
control.

 Implementing AI-powered traffic light control systems that
dynamically adjust signal timings based on real-time traffic
density.

 Introduction of an emergency vehicle prioritization mechanism
that enables quicker response times through intelligent traffic
signal adjustments.

 Application of image processing techniques to enhance road
safety and reduce congestion in urban areas.

The rest of this article is organized as follows. Section 2 discusses
the related work and technology background. Section 3 presents the
experimental results and discussion. Section 4 describes the system
architecture and explains the principles of operation. Section 5 shows
the implementation and testing of the system. Finally, Section 6
concludes the paper.

LITERATURE REVIEW

Over the years, there has been an increasing amount of literature on
several works and research done to solve the problems of traffic
congestion, and road safety using artificial intelligence techniques.

In 2014, Kanungo et al., in their work, proposed a system that utilizes
video processing techniques for intelligent traffic light switching and
real-time traffic density calculations at a four-way junction. The
proposed system makes use of video cameras that are installed over
red lights on each side of the junction. The cameras capture live
feeds from the traffic and then process these feeds on a server using
video image processing techniques [2]. The setback of the proposed
system is it heavily depends on costly video cameras for its operation
and has subpar performance in adverse weather conditions as well
as concerns regarding scalability for larger traffic junctions.

Based on the research by Kanungo et al., (2014) [2] Khekare, G.S. et
al., (2013) proposed the concept of VANETs (Vehicular Ad Hoc
Networks). These networks serve as examples of technologies
facilitating communication between vehicles and roadside units.
VANETs play a role that significantly impacts the concepts behind
smart city designs. The study focuses on a city framework designed
to help drivers make intelligent decisions to avoid traffic congestion
ultimately leading to reduced traffic jams. Additionally, it aims to
provide real-time information on traffic conditions [3]. Their proposed
system encounters a limitation in implementing VANET because it
necessitates the installation of suitable hardware on every vehicle
which can be difficult for two-wheelers. The entire framework is
dependent on the user’s decisions since traffic congestion will rely on
them.

In 2010, Salama A.S., Saleh B.K., and Eassa M.M. introduced a
system that uses sensors to manage traffic signals based on realtime
vehicle movements. Their work was acknowledged by Kanungo et al.,
in 2014 [2]. The system prioritizes roads with congestion and allows
for emergency vehicles to receive priority using active RFID
technology, adapting to traffic patterns and congestion levels [4].

In 2009, Haimeng Zhao et al., introduced a traffic light system that
uses a DSP, Nios II, and FPGA for dynamic control based on user
demands. Both systems require ongoing analysis and maintenance
and are vulnerable to damage due to challenging exterior conditions
[5]. To enhance traffic flow and prioritize emergency vehicles, Varun
Chava et al., presented a smart traffic control system in 2023 that
integrates the YOLOv4 and Mobile NetV2 convolutional neural
network models. The system’s primary objectives are to decrease the
need for human involvement, provide precise traffic management
results, and improve the effectiveness of real-time control. The entire
number of cars on the road was counted, the average size of vehicles
was calculated, and traffic signals were dynamically adjusted

based on the density of vehicles and the presence of emergency
vehicles through the use of high-resolution cameras [6]. The
proposed system also has limitations as it highly depends on
hardware sensors like RFID, and high-resolution cameras which
could pose a challenge in terms of maintenance, scalability of the
system, and practical application. Tushar Deb Nath proposed an
advanced Internet of Things-based road traffic control system in
2021. Intersection intelligent street lights monitor four important
variables: number of cars, time it takes to activate, amount of waiting
time, and emergency signals for each lane. To precisely count the
number of cars on the road, this study uses an automated video
processing technique that combines a Fully Convolutional Network
(FCN) for precise pixel boundaries and a faster R-CNN for object
detection (class + bounding box) [7].

In 2023, Sanjai et al., suggested an image-processing-based method
for detecting ambulances in traffic signals. Ambulance classification is
the main topic. Their method classifies and identifies emergency
vehicles according to their sort, make, or model using a convolutional
neural network and VGG-16. VGG-16 CNNs and emergency photos

are used in this strategy. Ambulance classification is made accurate
and efficient with the use of these two [8].

A model for ambulance detection was proposed by Bhoomika (2022)
[9] and Agrawal (2021) [10], as cited by Chava et al.,(2023), and it
was created utilizing the YOLOv5 and YOLOv3 algorithms in different
works. While Bhoomika (2022) employs the YOLOv5 method, [10]
uses the YOLOv3 algorithm to classify vehicles in images collected
from the footage as automobiles, buses, or trucks. Both models used
predetermined algorithms. A pre-trained algorithm receives the
cropped image of a vehicle that has been classified as a truck and
uses it to determine whether or not it is an ambulance. However, the
methods used by [9] and [10] both necessitate saving photographs
each time which uses up storage space when processing image
folders.

Using a convolutional neural network (CNN), Deepajothi et al., (2021)
[11], as referenced by Chava et al., (2023) [6], developed a traffic
management model for the detection of emergency vehicles. The
Raspberry Pi is equipped with the CNN model and it will quickly
decide whether to permit emergency vehicles to pass based on a
traffic video input. However, the main purpose of this traffic system is
for emergency vehicles. The output is red if there isn’t an emergency
vehicle visible in the input video. Other cars are not taken into
account by this model, therefore traffic management for such a
scenario is not offered.

Gandhi(2020) [12] and Rangari et al., (2022) [13] suggested that the
YOLO algorithm may be used to control traffic light signals
consecutively. According to [12], the amount of traffic on the road
determines when the green light should turn on. Thus, by employing
YOLO (You Look Only Once) in image processing, the traffic density
is determined. The JSON format is transformed from the YOLO to be
used as an input (count of vehicles) for determining how long it will
take for the green light to appear. Thus, the present traffic density
determines when the green signal will turn on. [13] designed an
intelligent traffic management system for India using YOLOv7. In
terms of speed and accuracy, that iteration of the YOLO algorithm
performs

better than any prior model for object detection.

Our model employs the hybrid approach of combining the strengths of
YOLOv5 and AlexNet V3 to detect, classify, and count vehicles. The
system in real-time can detect the video stream from a live camera.
The implementation of this approach runs videos at 30-40 frames per
second. This makes it detect objects and vehicles very quickly. It
uses a low-power processor of 2.4 GHz. By using that, we can be
able to achieve low-power operation - making this method the most
suitable for traffic control. The system successfully deals with traffic
data processing, vehicle recognition and classification, traffic
forecasting, and real-time traffic control.

Conventional Traffic Control System

Many regions still use the conventional traffic control system to
manage vehicular and pedestrian traffic flow on roads and
intersections. The conventional traffic control system consists of:

 Traffic Signals and Signs: Traffic signals regulate the flow of
traffic in urban areas. These areas utilize internationally
standardized signals, with red, yellow, and green controlling the
traffic movements. This automatic system has a disadvantage as
it can cause excessive delays in traffic as it glitches and stops
working at some point.

International Journal of Innovation Scientific Research and Review, Vol. 06, Issue 11, pp.7338-7352 November 2024 7339

 Manual Traffic Enforcement: Police Officers are responsible for
manually controlling traffic and making sure people comply with
speed limits, seatbelt rules, and other traffic rules. Officers use a
board, a sign light, and a whistle. This method is tedious and
human errors are unavoidable, which results in compromises
and uncontrollability of traffic.

Limitations of Current AI Technologies in Developing Countries

 Infrastructural Limitations: Numerous developing countries may

face obstacles regarding infrastructure which hinders the
adoption of advanced AI technologies. These challenges include
inadequate road networks, limited availability of high-speed
internet, and a lack of extensive sensor systems necessary for
gathering traffic information.

 A lack of technical expertise can be a hindrance. Insufficient
local technical knowledge could challenge AI systems’
advancement, implementation, and administration. The scarcity
of AI and machine learning professionals may delay integration
and increase reliance on foreign expertise, resulting in higher
costs.

 AI systems, particularly our system that uses YOLO and
AlexNet, require a steady source of energy to function
effectively. Outages of electricity and inconsistent electrical
distribution can interrupt traffic management systems, resulting
in inefficiencies and a reduction in effectiveness.

Theoretical Framework

1) Data Collection and Analysis: Plan methods for collecting data,

observing with creativity and standardized techniques. Big data
analysis and AI predict traffic trends and behavioral patterns.

2) Regulatory Framework and Enforcement: Cover elements for
implementing AI-driven systems, aligning regulations with AI
functionalities, ensuring enforcement, and establishing
guidelines.

3) Stakeholder Engagement and Capacity Building: Collaborate
with government agencies and community groups, investing in
training programs to utilize intelligent technologies effectively.

4) Infrastructure Integration: Explore integrating intelligent
technologies into existing infrastructure, evaluating suitability,
and enhancing road infrastructure.

Conceptual Framework for Implementation

Notwithstanding the recently portrayed hypothetical establishment, a
solid reasonable structure that tends to both the key and functional
parts of the combination cycle is expected for the effective execution
of artificial intelligence-based traffic management frameworks.

1) Policy and Governance Framework: Establish protocols for data
collection and utilization, ensuring AI solutions prioritize
stakeholder needs.

2) Risk Assessment and Mitigation Strategies: Integrate risk
assessments, examining challenges and cy-bersecurity
implications, with proactive mitigation strategies.

3) Financial and Resource Planning: Focus on acquiring funds and
resources, forming partnerships, and developing long-term
financial strategies.

4) Performance Monitoring and Evaluation: Include methods for
monitoring AI solutions and defining metrics for traffic signal
efficiency and road safety outcomes.

This framework establishes the groundwork for the efficient
implementation of AI-driven traffic management solutions.

METHODOLOGY

The idea of developing a system using cutting-edge technology aims
to enhance road safety, traffic flow, and signal control, with
capabilities for detecting cars, trucks, buses, and pedestrians. This
setup employs AI components to analyze visuals and predict traffic
volume. A camera is installed alongside traffic lights to capture image
sequences, which are processed to identify and count vehicles. The
system uses Python’s Open CV library for image processing to
classify vehicle types accurately.

Utilizing AI technologies like YOLOv5 and AlexNet V3, the system
performs real-time traffic analysis and management. Based on
vehicle count, traffic signals are dynamically adjusted to alleviate
congestion and prioritize emergency vehicles. This integration
enhances precision and efficiency, enabling signal control, incident
detection, and valuable insights for traffic control purposes. Figure 3.1
shows traffic lights with a camera installed alongside it to capture
video feeds.

Figure 3.1: Traffic lights with Camera

Models Used in the System

AlexNet Convolutional Neural Network

AlexNet consists of eight layers: the first five are convolutional, and
the last three are fully connected. The output from the last fully
connected layer feeds into a 1000-way softmax, generating a
distribution over 1000 class labels. AlexNet maximizes the
multinomial logistic regression objective by enhancing the average
log probability of correct label predictions. The second, fourth, and
fifth convolutional layers connect only to kernel maps in the preceding
layer on the same GPU, while the third convolutional layer connects
to all kernel maps in the second layer. Neurons in fully connected
layers interconnect with all neurons in the previous layer. Max-pooling
layers follow both response normalization layers and the fifth
convolutional layer. The ReLU activation function is applied to all
layers. The first convolutional layer uses 96 kernels of size 11x11x3
with a stride of 4 on a 224x224x3 input image. The next layer
operates on the pooled result from the first layer using 256 kernels of
size 5x5x48. The third, fourth, and fifth convolutional layers are linked
without pooling or normalization in between, with the third layer
containing 384 kernels of size 3x3x256, the fourth layer having 384
sets of 3x3x192 bits, and the fifth layer containing 256 sets of
3x3x192 parts. Combined, each layer totals 4096 neurons. [14].

International Journal of Innovation Scientific Research and Review, Vol. 06, Issue 11, pp.7338-7352 November 2024 7340

Figure 3.2: AlexNet Architecture

YOLOv5 for Object Detection

The latest YOLOv5 version, "You Only Look Once," excels in quick
and accurate object recognition in images and videos, making it
highly effective for driving, traffic signal recognition, and surveillance.
YOLOv5 has four versions: 5x, 5s, 5m, and 5l, each featuring a head
section, configuration setup, and neck design. A model developed by
experts [15].

Konala et al., (2023) provide insights into enhancing YOLOv5 based
on improved images, as discussed by Sheng et al., (2022) [16]. A key
aspect of the model is segmenting input images into a grid for
analysis, predicting the number of bounding boxes in each cell and
the likelihood of an object being present. Each bounding box includes
five elements: a probability of containing an object, its width and
height, and its center coordinates (x and y). The algorithm also
predicts class probabilities for each object, indicating its category,
such as a person, car, or dog.

Figure 3.3: YOLOv5 Proposed Model

Vehicle Detection

Figure 3.4 shows models in vehicle detection.

Figure 3.4: Models in Vehicle detection

1) Image Acquisition

 An image is typically represented as a two-dimensional function
f(x, y), where x and y are plane coordinates. The intensity of the
image at any given point (f) is commonly referred to as the grey
level. To transform an analog image into a digital format for
storage in shared and drive databases, continuous x and y
values must be converted into discrete ones. Each digital image
comprises finite elements known as pixels [17]. Image

acquisition is done by using an external Video. Capturing images
involves utilizing a video source. For this project, the operating
system of choice is LINUX as it is known for its open-source
nature that undergoes updates.

2) Image Preprocessing

 Image Resizing/Rescaling

Image scaling is a common process in digital photography,
where the size of an image is changed by adjusting the pixel
grid. This resizing becomes essential when there’s a need to
alter the total number of pixels. The outcome can differ
considerably based on the algorithm used, even if the same
resizing operation is employed [18].

 Image Enhancement

Enhancing images entails modifying digital images to better
adapt them for display or subsequent examination. For example,
noise can be removed to facilitate the identification of important
features. In low-contrast images, neighboring elements may
blend during binarization. Therefore, it is essential to minimize
the blending of these elements before applying a threshold to the
image. This is where "Power-Law Transformation" becomes
valuable as it enhances contrast and refines segmentation. The
foundational version of power law transformation is:

 s = cr
γ
 , (3.1)

In Formula 3.1, r and s symbolize the input and output
intensities, with c denoting positive con-stants. Power law is
utilized by various imaging devices for capture, printing, and
display. The exponent in the power-law equation is commonly
known as gamma. As a result, gamma correction is employed to
address these power law response phenomena ensuring
accurate image representation on computer screens.

In our project, Image preprocessing functions are imported from
Python Open CV libraries and are included in the final Python
program. This will automatically process the image when the
program is invoked.

 Image Processing

Image processing techniques are used to improve the quality
and usefulness of images captured by various devices, such as
cameras, sensors on space probes and aircraft, or everyday
photographs. It covers aspects related to how images are
represented, methods for reducing file sizes with-out significant
loss in quality, and advanced manipulations that can be
performed on image data. These manipulations include
processes like improving image clarity through sharpening or
blur-ring, adjusting brightness levels, and enhancing edges
among others. Image processing is a branch of signal
processing where the input is an image (e.g., photos or video
frames) and the output may be another image or a set of
characteristics extracted from the original one [19].

 Edge Detection

The process of edge detection involves a set of mathematical
techniques that are utilized to recognize areas in a digital image
where there is a sudden change or disruption in brightness,
indicating the presence of edges. These abrupt changes form
curved lines and are crucial for tasks such as feature
identification and extraction in fields like image processing,
machine vision, and computer vision [20].

International Journal of Innovation Scientific Research and Review, Vol. 06, Issue 11, pp.7338-7352 November 2024 7341

3) Image Matching

(Yamini 2022) [21] described image matching as a recognition
method utilizing matching and involves using a prototype pattern
vector to represent each class. When presented with an
unknown pattern, it is assigned to the class that most closely
resembles it according to a predetermined measure. The most
straightforward method is the minimum distance classifier, which
calculates the distance between the unknown pattern and each
of the prototype vectors and selects the shortest distance for
deciding. Another method relies on correlation, expressed
directly in terms of images, and is quite intuitive. Our image-
matching technique entails comparing a reference image with a
real-time image pixel by pixel. Pixel-based comparison presents
certain drawbacks; however, it is recognized as one of the most
effective methods for the algorithm implemented in this project
for making decisions. The original image is stored in a memory
matrix, and the real-time image is similarly transformed into the
required matrix. For two images to be deemed identical, their
pixel values within the matrix must correspond. Subsequently,
the percentage of alignment can be expressed as in Formula
3.2:

 % match = Number of pixels matched successfully (3.2)

total number of pixels

Experimental Evaluation and Analysis of the System

In our system, each frame is taken to the YOLOv5 algorithm and the
frame is read as input through Open CV’s im read() method in
Python. The YOLOv5 is trained using the COCO dataset which has
about 330,000 images over 2.5 million object instances and has a
large object collection, segmentation, and captioning collection.
Training the YOLOv5 algorithm in the COCO dataset allows the
algorithm to possess a much broader and more varied range of
objects and situations, thereby improving its capacity to precisely
identify and categorize objects [6]. The model has the coco.names file
which contains the names of all the classes and objects that the
system can detect on the custom detector.

The image input size is set to 416 x 416 pixels. The neural network
model and dataset are trained over 200 epochs and use a batch size
of 150, that is, the model weights are updated after every 150
samples are processed. The confidence threshold is set to 0.5 which
indicates that the model must be at least 50% sure that the detected
object belongs to a particular class (car, truck, people, etc) before it
considers it a valid detection.

Data Preprocessing

The system predicts traffic conditions by using Tensor Flow to
construct YOLO and AlexNet models with several dense layers,
indicating a focus on capturing complex patterns within traffic data.
Before feeding the data into the model, it is split into training and
testing sets. Assessing the model’s performance post-training by
comparing predicted and real traffic situations showcases how well
the model can forecast traffic trends.

 Dataset Processing

 It is crucial to prepare the dataset before starting to ensure its
compatibility with models. Tasks such as improving, organizing,
and isolating components are some examples of actions that can
enhance the accuracy and quality of the data used in training
models.

 Splitting the Dataset for Training and Testing

 It is common in AI practices to split the dataset into training and
testing sets for model evaluation. Our approach involves
converting a Data Frame into an array simplifying data
processing. To distinguish features and labels for model training
and evaluation, the dataset is divided 90-10 into training and
testing subsets respectively. The setup designates the column
as a label and the first four columns of the dataset as predictors.
This step is crucial to demonstrate how an AI model learns from
the training set without exposure to test data. The training set is
utilized to educate the model by allowing it to analyze the
information while the testing set is employed to assess how well
the model performs with data.

 Training and Testing Sets

– Training Set: This segment making up 90% of the dataset is
usually bigger. It is used to teach the model and helps the
algorithms understand the patterns and relationships in the
data.

– Testing Dataset: The testing subset, constituting the
remaining 10% of the data collection, plays a critical role in
assessing the model’s capacity for generalization. This
portion facilitates an impartial evaluation of the model’s
performance with new data and showcases its ability to
forecast traffic conditions outside the training set accurately.

Figure 3.5: Code showing the Creating, Training, and Testing of
Datasets

International Journal of Innovation Scientific Research and Review, Vol. 06, Issue 11, pp.7338-7352 November 2024 7342

Performance Metrics of YOLOv5

The performance of each trained YOLOv5 model was evaluated
using metrics such as accuracy, precision, recall mean average
precision (mAP), and F1 score which are determined through
calculations. Formula 3.3 represents Accuracy, Formula 3.4
Precision, Formula 3.5 Recall, Formula 3.6, and Formula 3.7
represents mean average precision.

In the Formulas above, the scenario TP represents the count of
predictions TN stands for the count of accurate negative predictions,
FP indicates the count of incorrect (false) positive predictions, FN
denotes the count of incorrect negative predictions, APk signifies the
average precision (AP), for class k and n represents the number of
confidence thresholds which is set at 0.5 or 50% [22].

Figure 3.6 represents graphs depicting the Accuracy, Precision,
Recall, mean average precision (mAP), and f1-score trained over 200
epochs.

Figure 3.6: Graphs showing performance metrics of Accuracy,
Precision, Recall, mean average precision (mAP), and f1-score

obtained after training YOLO over 200 epochs.

Performance Evaluation

The system’s performance is evaluated by training the YOLOv5 and
AlexNet neural networks to anticipate traffic outcomes. The mean
squared error is used as the loss function throughout the training
procedure. An independent test dataset is used to validate the
model’s potential for generalization. The trained model is tested using
the test data (test_predictors and test_labels), yielding a final
performance metrics. The model’ s efficacy is further validated by
comparing anticipated values to actual values using visual
representations, demonstrating its accuracy in forecasting appropriate

traffic cycle lengths. The test set is used to check the model’s
accuracy, and the precision is evaluated by comparing displayed and
real optimal time cycles in bar graphs which will be shown in the
implementation phase of the project.

Experimental Results

After training and testing, the model and the size of the datasets are
determined. The threshold helps to filter out weaker detection and
reduce false positives, improving the overall accuracy of the object
detection process. After 200 training epochs, the model’s predictions
are visually evaluated against actual values through line plots to
demonstrate its efficacy in estimating optimal traffic light cycles. Non-
maxima suppression is applied to the images to reduce redundancy
among detected bounding boxes. Only the strongest bounding box is
retained when multiple boxes overlap significantly and detect the
same object. The weaker overlapping detection is eliminated, making
sure each detected object is represented by a single bounding box,
improving the result’s accuracy and clarity.

The validation data set limits the batches of samples analyzed per
epoch to 100. It provides test data for evaluating model performance
at the end of each epoch. There is a limit on the number of validation
batches that can be run. This setup helps monitor how well the model
is learning and its ability to adapt to inputs.

This application includes components related to traffic control
systems such as data collection, analysis, and display aimed at
improving traffic flow. To effectively manage traffic signals involves
creating datasets from traffic images, analyzing the vehicle density
and types in the area, and utilizing this information. By using a state
machine that adjusts signals based on real-time traffic data, the
system mimics the functionality of traffic lights.

Additionally, we utilize tools like Matplotlib for visualization, Pandas
for data manipulation, and techniques from the Image Processing
module to study car types and traffic density in images. Through
image processing algorithms applied to a series of photos, results are
compiled into a CSV file. It also can generate graphs depicting lane-
by-lane vehicle counts, traffic flow patterns, and optimal cycle
duration. These functionalities offer insights into traffic behaviors and
congestion issues that can aid in making decisions, for effective
management of traffic signals.

In the model, regression is depicted as a function that connects the
output (y) to input features (X). We use weights (w) and biases (b) at
all levels of the model along with activation functions like ReLU in
layers to predict the target value y. Ultimately, it produces a value as
the prediction. During training, the model adjusts weights and biases
to reduce the squared error between predicted values in the dataset.
The formula for the regression can be represented as:

y = f(W3(ReLU(W2(ReLU(W1X +b1)+b2))+b3) (3.8)

The formula represents a feed forward neural network with two
hidden layers and an output layer where:

X = [X1, X2, X3, X4] represents the input features. W1, W2, W3 are
the weight matrices for each layer. b1, b2, b3 are the biases for each
layer. ReLU(x) = max(0, x) is the Rectified Linear Unit activation
function used in the first two dense layers. f (x) is the identity function
in the output layer since it is a regression task. yˆ is the predicted
output.

International Journal of Innovation Scientific Research and Review, Vol. 06, Issue 11, pp.7338-7352 November 2024 7343

Formula 3.8 is the computation used in the hybrid system. YOLOv5
analyses full pictures in a single forward pass, predicting bounding
boxes and class probabilities for objects using several convolutional
layers and ReLU activation. This feature enables real-time recognition
of cars and people, which aids in traffic flow monitoring and
congestion detection. AlexNet, used for image recognition also
employs convolutional layers and ReLU activations for feature
extraction and classification. AlexNet can classify various vehicle
kinds and analyze traffic patterns in a hybrid system.

The model has been trained to minimize the loss function, specifically
by reducing the mean squared error between the predicted outputs
and the actual labels. This error aids in the adjustment of the model’s
parameters, hence improving predictions.

The mean-squared loss function determines the difference between
the model’s predictions and the actual labels. This inaccuracy aids in
adjusting the model’s parameters, hence improving predictions.
Labels are the known output or goal values that the model attempts to
predict. Labels are required for supervised learning, and the purpose
is to teach the model to generate predictions based on input data.
The labels are the proper responses or outcomes for each example in
our dataset. It is used in the classification and regression tasks to
classify the datasets of images of vehicles.

Figure 3.7 shows the sample of images used to train the dataset.
Figure 3.8 shows the images detected in real-time after the training
and testing.

Figure 3.7: Sample of Images Used to train the dataset

Figure 3.8: Vehicle Detection in real-time with Vehicle label

Traffic Prediction

We test the system with four-lane samples in our model. After
comparing four lanes, the lane with the most cars is given a green
signal at that particular timeframe. For the subsequent timeframe, this
process is repeated as shown in Table 3.1.

Table 3.1: Traffic Predictions and Green Signal Activation

Lane Numbers and Car
Count

Prediction

Green Signal

Lane 1: 10, Lane 2: 25,
Lane 3: 30, Lane 4: 42

Lane 4 has the most
vehicles

The green signal
turned on
for lane number 4

Lane 1: 60, Lane 2: 18,
Lane 3: 42

Lane 1 has the most
vehicles

The green signal
turned on
for lane number 1

Lane 2: 20, Lane 3: 39,
Lane 4: 25

Lane 3 has the most
vehicles

The green signal
turned on
for lane number 3

Lane 1: 76, Lane 2: 90,
Lane 4: 46

Lane 2 has the most
vehicles

The green signal
turned on
for lane number 2

Lane 1: 104, Lane 3: 52,
Lane 4: 65

Lane 1 has the most
vehicles

The green signal
turned on
for lane number 1

SYSTEM ANALYSIS AND DESIGN

System Requirements

According to Tilley (2019), a system requirement is a characteristic or
feature that must be included in an information system to satisfy
business requirements and be acceptable to users. System
requirements serve as benchmarks to measure the overall
acceptability of the finished system [23].

Mahalank et al., (2016) stated that the design of any AI or IoT-based
system is rooted in two perspectives: Requirement Analysis. The
initial perspective revolves around Functional Requirements which
relate to the functions that the AI or IoT-based Traffic Density
indicators can execute as a system. The second outlook includes
Non-Functional Requirements, which denote the characteristics that
enhance brand value for the design unit [24].

1) Functional Requirements

Functional requirements outline the activities, procedures, and
capabilities that the system is expected to execute. The
functional requirements of the system are:

 Design a user interface that is intuitive and easily

accessible for individuals with varying degrees of technical
knowledge.

 Real-Time Traffic Monitoring: The system needs to
consistently monitor traffic conditions with cameras and
sensors, and process data in real-time.

 Utilize YOLOv5 to accurately detect and categorize objects
in the traffic, including automobiles, pedestrians, and
cyclists, and AlexNet V3 for detailed classification such as
identifying vehicle types and recognizing license plates.

 Traffic Flow Optimization: Analyzing traffic information to
pinpoint congestion and adjust traffic light timing can
improve traffic flow and minimize bottlenecks.

 Incident Detection and Response: Automatically identify
road accidents or incidents and notify traffic management
centers and emergency services.

 Implement AI-powered analysis to forecast traffic trends,
detect bottlenecks, and recommend the best routes for
drivers.

 Offer a complete user interface for traffic operators that
combines real-time data representation, notifications, and
the ability to manually intervene in AI decisions.

(a) Software Requirements Specifications

 PYTHON LANGUAGE
 ANACONDA IDE

International Journal of Innovation Scientific Research and Review, Vol. 06, Issue 11, pp.7338-7352 November 2024 7344

(b) Hardware Requirements Specifications

Table 4.1 shows the hardware requirements specifications of the
system.

Table 4.1: Hardware Specifications

Hardware Components Specification

System Pentium Dual Core

Hard Disk 120 GB

Monitor 15’’LED

Input Devices Keyboard, Mouse

RAM Minimum of 4 GB

2) Non-Functional Requirements

 The non-functional requirements outline the functioning of the
system, emphasizing quality characteristics, efficiency, and
operational criteria.

 High level of precision in object detection and
categorization while reducing incorrect identifications and
missed detections. The system must maintain a reliability of
99.9% uptime for consistent functionality.

 The system should grow and encompass additional areas
without a decline in performance.

 Real-time processing allows for the rapid detection and
categorization of objects, facilitating prompt decision-
making in traffic management. Also, ensure that all
methods of surveillance and data collection adhere to
privacy laws and ethical standards.

 Ensure seamless integration with current traffic
management infrastructure and emergency response
systems to guarantee compatibility and interoperability.

System Architecture

Hardware Architecture

The suggested framework involves Raspberry Pi linked to four groups
of LEDs, which simulate the traffic signals. The captured images and
the reference images are fed manually to the Raspberry Pi currently.
We have incorporated the Raspberry Pi model 3 into this setup [25].
The Raspberry Pi serves as the controller for the system. To manage
the lighting, it employs a Python service that starts automatically. It
captures an image and compares it with the one. If there is traffic on a
road at the intersection compared to others, that road will be given
priority and have a longer green light duration determined by the Pi
based on matching rates with the reference image. For analysis
purposes, the Pi also transmits data to the cloud. The location of the
signal percentage of matches in each image and timestamps of when
photos were taken are all included in the data provided in format.
Software Architecture

The proposed model makes use of Open CV which allows companies
to conveniently incorporate and adapt the code according to their
requirements. The library contains a vast collection of over 2500
advanced algorithms, encompassing both traditional and cutting-edge
techniques in computer vision and machine learning. It is compatible
with Windows, Linux, Android, and Mac OS, and it provides interfaces
for C++, C, Python, Java, and MATLAB. It is primarily designed for
real-time vision applications and makes use of MMX and SSE
instructions whenever possible. Developed in C++, Open CV also
includes a templated interface that integrates smoothly with STL
containers [26].

Modules of the System

1) Image Acquisition Module

 Image acquisition is accomplished through the use of an external
video or videos saved in the path folder of the project. The
operating system utilized in our project is LINUX, which is an
open-source program that is often updated.

2) Image Preprocessing Module

 Image preparation processes are imported and loaded from the
Python Open CV libraries and used in the final Python program.
When you run the program, the image will be processed
automatically.

3) Object Detection Module

 In our current study, fundamental components of image analysis
include edges, lines, and points, with a focus on edges. Our
research employs an object detection approach for image
alignment, where the method identifies pixels within the image
that align with the shapes of depicted objects. This process
culminates in the generation of a binary image highlighting the
detected object.

4) Vehicle Count Module

 The process of vehicle counting commences with establishing a
baseline image depicting an unoccupied road, which is stored in
memory for reference. Subsequently, images captured from the
four lanes undergo comparison with the reference image to
ascertain the density of vehicles present and it is facilitated
through the utilization of the Object Detection Module.

5) Light Control Module

 After the vehicle detection process, reference and real-time
images are compared to facilitate traffic light control by
considering the number of vehicles in each lane. Varying
durations for activating the green light are applied based on the
number of vehicles. Initially, the minimum green light on time is
set to 10 seconds for all lanes. At the point when lane 1 has
more vehicles than other lanes, the green light is turned on for
the lane longer. This process will continue checking for the lane
with the heaviest traffic and allocating more time to it for smooth
traffic flow.

6) Traffic Prediction Module

 The system uses the AI framework Tensor Flow to analyze real-
time traffic data. This part uses data analysis and scenario
prediction to create traffic pattern models by utilizing Tensor
Flows capabilities. During this procedure, databases containing
data on traffic volume, speed, and congestion levels are used to
train AI models. The system can therefore predict traffic
conditions. Make suggestions for efficient traffic signal tactics. To
lessen traffic and improve overall traffic flow efficiency, traffic
light management is implemented with the help of the predictive
feature.

Feasibility Study

Before implementing a system, the organization, stakeholders, and
developers need to evaluate the pro-posed system’s feasibility cost,
effectiveness, acceptance, and ability to enhance traffic management
and road safety.

The feasibility study is particularly useful in thoroughly assessing the
effectiveness of the proposed system in addressing the challenges

International Journal of Innovation Scientific Research and Review, Vol. 06, Issue 11, pp.7338-7352 November 2024 7345

and requirements of urban traffic management and the evaluation
goes beyond considerations such as market readiness, technological
infrastructure prerequisites, financial sustain-ability, and potential
socio-economic impacts.

The key considerations involved in the feasibility study include:

1) Technical Feasibility: To evaluate the technical feasibility of this

project, a series of issues are considered when doing this study:

 Assessing the present status of AI technologies applicable
to traffic control and road safety, including examining the
effectiveness of machine learning models, image
processing methods, and real-time data analysis
approaches in tackling traffic challenges.

 Quality data is essential for training AI models, such as
information on traffic patterns, incident records, and
meteorological factors, which should be easily obtainable
and reachable.

 Supporting the implementation of AI solutions requires
essential infrastructure such as traffic cameras, sensors,
and computational capacity.

2) Economic Feasibility: In this study, the economic impact the
system has on stakeholders is investigated. Investing in a cost-
effective traffic management system will go a long way. The
amount to be spent on the system is limited; procurement cost,
which includes the cost of equipment like the traffic cameras,
installation, and the cost of training users. The expenditure must
be justified, and some of the technologies used in the developed
system. Since the system will be deployed in a cloud, the update
of the system will be done by service providers. The
maintenance of hardware and training of individuals to get
familiar with the system.

3) Social Feasibility: this part of the study explores the perception
and acceptance of the system by road users, governments, and
different stakeholders. It is important to keep in mind the process
of training users on how to use the system. The users’
willingness to adopt the system relies on their level of
understanding and familiarity with its operations. Purchasers
must consider the framework as essential as opposed to
surveying it as a reason to worry.

System Design

System design is a way of outlining the structure, elements, sections,
interfaces, and information of a system to satisfy particular needs. It
entails the transformation of user requirements into a detailed
blueprint that guides the implementation phase. The objective is to
improve traffic flow, reduce travel times, enhance safety, and support
emergency response by coming up with an intuitive functional
structure that meets the task at hand whilst putting performance,
maintenance, and sustainability into account. This chapter’s purpose
is to describe the system’s design phase.

UML Diagrams

UML diagrams are designed to help us and users understand
complicated software systems’ concepts, code architecture, and
potential implementations. Information about the system is converted
into a graphical representation that is easier to read and comprehend.
It adopts a standardized procedure for creating a system model and
documenting conceptual theories as well. They assist developers in
seeing the big picture of the system, as well as readers and people
without programming experience in understanding software
processes and operations.

Use Case Diagram

A use case diagram is a graphical representation of a user’s potential
interactions with a technology. This definition of a use-case diagram
is close to that of Yamini (2022) [21] who defined it as a form of
behavioral diagram specified by and built from a use-case analysis
whose objective is to offer a graphical picture of a system’s
performance in the form of actors. Its primary goal is to demonstrate
which system functions are executed by which actor, as shown in
Figure 4.1.

Figure 4.1: Use Case Diagram

Class Diagram

This diagram showcases how the Traffic Light Controller, Vehicle
Detection System, and Traffic Data Analysis Module work together to
improve traffic flow. Demonstrate that the Traffic Operator, System
Administrator, and Public User classes are derived from the User
Interface class. This demonstrates common characteristics while
highlighting their distinct functionalities. Also, specify that the Traffic
Data Analysis Module could consolidate data from the Vehicle
Detection System as well as other sources for analysis. Depict
interconnections between classes such as the User Interface class
depending on the Database class to store and retrieve user
preferences and traffic data as shown in Figure 4.2.

Figure 4.2: Class Diagram

Component Diagram

This diagram offers an overview of the software components and their
relationships within the system. Component diagrams illustrate
implementation details and are crucial during the application’s

International Journal of Innovation Scientific Research and Review, Vol. 06, Issue 11, pp.7338-7352 November 2024 7346

implementation phase, impacting effectiveness and maintenance.
Identifying system files, libraries, and relevant components, along
with their interactions, is essential (Yamini 2022) [21].

The system performs critical functions like collecting traffic data, Data
Processing, and recognition and categorization of vehicles. The
Traffic Prediction tool anticipates patterns using historical and real-
time data, and Traffic Control adjusts signals based on these
predictions. A user interface enables traffic operators and
administrators to monitor conditions and make modifications. The
Database stores processed and raw data, configurations, and past
traffic records, as shown in Figure 4.3.

Figure 4.3: Component Diagram

Deployment Diagram

Figure 4.4 shows the system’s execution across hardware and
network resources, highlighting key component interactions. [21]
defines a deployment diagram as nodes representing hardware for
application deployment, crucial for scalability, maintenance, and
portability.

Figure 4.4: Deployment Diagram

Database Design

The database structure and design facilitate the core operations of
our traffic management system, such as collecting and analyzing
data, identifying and categorizing vehicles, predicting traffic patterns,
prioritizing emergency vehicle access, and managing user roles as
shown in Figure 4.5.

Figure 4.5: Database Design

Entity Relationship Diagram

The ER diagram of our system shows different entities and specifies
the entities, attributes, and relation-ships that exist between them.
Our ER diagram has entities that are represented by key components
such as the system, traffic data, vehicle, traffic prediction, and
emergency vehicles as shown in Figure 4.6.

Figure 4.6: ER Diagram

Proposed System Architecture

The use of the system starts with data collection from traffic cameras
installed alongside traffic lights. The different modules of the system
in Figure 4.7 are discussed in previous chapters. The videos are
converted to frames, and images are put into the machine learning
models (YOLOv5 and AlexNet V3) to detect vehicles in the images
and identify, classify, and count them. Tensor Flow is employed to
analyze data and predict traffic conditions. The predictions are used
to adjust traffic signals accordingly. The user interface allows different
users and provides them with access to traffic data and system
controls. The number of vehicles on each lane and their labels are
displayed, and datasets of the different lanes, graphs, and the view of
the road can be viewed in the user interface. With the conda
package, switching from different pages in the system is easy.

Figure 4.7: Overview of the Proposed System Architecture

Flow Chart of System Architecture

This flowchart 4.8 shows the different stages involved in the traffic
management system from how videos are captured and processed

International Journal of Innovation Scientific Research and Review, Vol. 06, Issue 11, pp.7338-7352 November 2024 7347

using YOLOv5 for vehicle detection and labeling, further classified by
AlexNet V3 where detected emergency vehicles are given priority to
pass. Other traffic conditions are analyzed to predict traffic flow using
Tensor Flow models. Forecasts such as this, real-time analysis, and
comparison of the number of vehicles in each lane are used to
manage and change traffic lights.

Figure 4.8: Flow Chart Showing Processes involved in the Traffic
Management

GUI (Graphical User Interface)

Our system makes use of Tkinter for the design of the GUI as it is a
standard Python GUI library that provides an easy approach to
developing GUI programs. Its inclusion in Python makes it accessible
and simple to use. Its main advantage is it offers a variety of widgets
for creating interfaces. The GUIs that are created show AI-detected
objects, offer graphs and insights on traffic patterns, and enable
manual or AI-assisted adjustments of the traffic lights just to name a
few. The figure below shows a simple GUI of the system:

The GUI consists of:

 Traffic specification functions inter-green period, amber period,
number of phases, initial delay, mini-mum time, the width of the
four lanes, maximum cycle time, size of the dataset, and number
of iterations.

 buttons that provide different views; Test image processing, run
the traffic system, show the view of the road, create and display
datasets, and data visualization.

 buttons to import the input folder and the output folder that
contains the frames and images used in the system.

The traffic specifications can be changed and given different values.

IMPLEMENTATION AND TESTING OF THE
SYSTEM

The implementation stage of the system development life cycle
entails transforming the system design into a fully operational and
functional system. It involves all tasks associated with converting
conceptual, architectural, and detailed designs into an active solution.
Implementation acts as a link between the planned structure and
functionalities and the practical realization and utilization of the
system in an operational environment.

This phase is very important in the creation of the system. It includes
testing and working with different videos, images, and datasets as
well as releasing the system to its intended users and putting it to
work in a real-world scenario. The result of this stage is dependent on
testing, engaging with stakeholders, and verifying that the website
adheres to all specified demands in advance of and following
deployment.

Report of the System

 It generates Datasets of different specifications used in the

system
 You can easily save the Dataset and export it into CSV format.
 The traffic data can be represented in graphical format and

saved to analyze traffic.

Testing

Unit Testing

Unit testing is a software testing approach to evaluate individual
components or modules, ensuring they meet requirements and
function correctly. Each field entry, page link, initial screen, and
message response must work without delay (Yamini 2022) [21].

Our model confirms that the correct input and output folders are
selected in the proper format—input for video frame images and
output for trained models. Users should access the correct page, edit
specifications, and upload folders without screens, buttons, or image
loading delays.

Result: All buttons and links work correctly. There are no delays in
loading the buttons and images.

1) Uploading Input and Output Folders

 A unit test was conducted to test the outcome of not uploading
the correct image input and output folders. This resulted in the
system not working.

2) View output of Image Processing

 The image processing algorithm’s output was empty without
uploading the right folders. When the right input and output
folders are selected, the image processing algorithm output
shows the images.

3) Dataset Size

 The dataset size was tested with different numbers of frames set
in the traffic parameter specifications (50, 75, 100). The results
obtained from the test are the exact size of the dataset specified
in the traffic parameter specifications.

Integration Testing

Integration testing ensures the smooth functioning of modules or
programs requiring interaction without errors. It validates that the
interfaces and connections between different system components are
working as intended. After passing individual unit tests, integration
testing focuses on assessing the control flow among modules and the
exchanged data. This type of testing follows procedures similar to unit
testing, such as creating a test plan with a series of tests, and is
usually conducted by programmers and/or systems analysts.
Integration testing often involves four approaches: user interface
testing, use scenario testing, data flow testing, and system interface
validation (Dennis 2009) [27].

International Journal of Innovation Scientific Research and Review, Vol. 06, Issue 11, pp.7338-7352 November 2024 7348

System Testing

System testing is crucial in the software development lifecycle,
ensuring the fully integrated system meets specific requirements. It
aims to identify faults and ensure error-free operation before launch,
instilling confidence in quality and reliability. Comprehensive testing
reduces the likelihood of malfunctions and facilitates a smooth
transition to operational use. This phase occurs after unit and
integration testing but before production deployment, with the primary
goal of verifying that the system adheres to its intended design and
performs as expected in real-world scenarios.

White Box Testing

White box testing involves analyzing the framework’s engineering and
programming to evaluate how well vehicle recognition algorithms like
YOLOv5 ensure identification under various conditions. It examines
all possible combinations of conditions, loops, and code paths to
ensure coverage and functionality. This testing also identifies
overlooked issues, such as traffic patterns or unexpected problems,
while focusing on security by detecting weaknesses that could
compromise the system’s integrity. It thoroughly assesses the
system’s performance, emphasizing speed and accuracy in vehicle
identification and traffic forecasting.

Black Box Testing

Black box testing is one procedure for evaluating the framework’s
usefulness. It's essential spotlight is on client cooperation. anticipated
that results interestingly, should be the inside pecking order of codes.
The most common way of checking that the framework can precisely
distinguish, characterize, and change traffic lights for different vehicle
types and traffic situations starts with testing. User interface testing
ensures that traffic administrators can undoubtedly view and utilize
the framework to simply decide. Execution testing surveys the
framework’s ability to handle enormous measures of traffic
information and convey the necessary answers for testing
circumstances.

Functional Testing

Each function in the program is tested to ensure compliance with all
standards and concepts. Every capability is examined by inputting
data and verifying that the output meets predetermined criteria. The
primary goal of testing is to assess whether the program operates
according to its specifications, including input/output verification, user
interface, database interactions, and API functionality. Various
methodologies are employed, such as unit, smoke, integration,
system, and sanity tests. The process involves creating test cases
based on requirements, establishing a test environment, executing
tests, recording defects, and retesting to identify functionality gaps,
errors, or unexpected behavior while ensuring adherence to specified
requirements.

The functional test of our system is focused on:

 making sure there are valid inputs. That is to say, only valid
inputs are accepted in the system.

 invalid inputs will result in errors, and the system will not function
normally.

 the indicated classes of application outputs must be exercised.

Table 5.1 shows the functional testing of the system with each
iteration on different lanes.

Table 5.1: Functional Testing of the System

Traffic
Density

Number of
Vehicles and
Traffic
flow

Lane
1

Lane
2

Lane
3

Lane
4

Total
Time
for one
Iteration

No traffic

The minimum
green light on
time
is set to 10
seconds
for all lanes

10
sec

10
sec

10
sec

10
sec

40 sec

Lane 1 has
more
vehicles
than the
other lanes

19 vehicles
with a traffic
flow of 69.25

34
sec

10
sec

10
sec

10
sec

64 sec

Lane 2 has
more
vehicles
than the
other lanes

21 vehicles
with a traffic
flow of 82.25

10sec

39
sec

10
sec

10
sec

69 sec

Lane 3 has
more
vehicles
than the
other lanes

21 vehicles
with a traffic
flow of 64.0

10
sec

34
sec

10
sec

10
sec

64 sec

Lane 4 has
more
vehicles
than the
other lanes

19 vehicles
with a traffic
flow of 70.25

10
sec

10
sec

10
sec

34
sec

64 sec

User Acceptance Testing

According to Yamini (2022), User Acceptance Testing (UAT) is crucial
for any project and requires significant end-user involvement. End
users, such as traffic controllers, test the intelligent traffic control
system to ensure it meets operational requirements and user
expectations in real or simulated scenarios. This testing confirms the
system’s performance, including vehicle identification accuracy,
improved traffic flow, and interoperability with existing infrastructure.
Feedback from UAT leads to final adjustments to align the system
with its goals. The UAT results indicate that all test cases passed,
confirming the system’s readiness for deployment and its capability to
enhance traffic control and safety measures. [21].

Description of Modules of the System

1) First Page: Figure 5.1 is the first page accessed after the user

runs the ’main.py’ file in the terminal of the project in the
Anaconda navigator.

Figure 5.1: First Page

2) Traffic Specifications: Figure 5.2 shows buttons that, when

clicked, will let us set the traffic specifications for editing and

International Journal of Innovation Scientific Research and Review, Vol. 06, Issue 11, pp.7338-7352 November 2024 7349

changing the values to our preferred specifications. For example,
the initial dataset size is set to 100 frames, which means 100
minutes of traffic is considered. The number of iterations as well
as everything else can be edited to fit the user’s demands.

Figure 5.2: Traffic Parameter Specifications

3) Image Processing Algorithm: Before testing the image

processing algorithm, the input folder that contains the images
that were gotten from the video frames must be selected. The
output folder must be selected too. After setting the input, output
folders, and traffic specifications, the image processing algorithm
can be tested. The system is going to test with one image which
it will choose randomly from the images that were gotten from
the frames converted from the videos captured. The actual
image is compared to the reference image and the total number
of vehicles detected is shown along with the labeling of the
vehicles.

Figure 5.3: Process Image

4) Run Intelligent Traffic Manager: the detection of the total number

of vehicles in each lane will lead us to run the traffic manager.
This will compare the total number of vehicles in each lane
turning on the green light to the lane with the heaviest traffic.
Figure 5.4 shows lane 1 has 20 vehicles detected, thus a time of
34 seconds was allocated to that lane.

Figure 5.4: Traffic Light Control

5) Road View: Figure 5.5 shows different lane structures and

shows the number of vehicles on each lane. This will be updated
based on the files uploaded. Traffic lights will work on each lane
depending on the vehicle density of the lanes and give priority to
the lane with the most vehicles.

Figure 5.5: Road View

6) Create Dataset: Figure 5.6 shows the dataset of all the vehicles
given along with the number of vehicles in each lane, traffic flow,
optimum cycle time, delay time, etc. The size of the dataset is
affected by the number of frames set in the specifications, which
was set to a hundred minutes. Due to this, the dataset will be
created and generated for all the data of 100 minutes. The
dataset can be saved and this will create a CSV file where all the
data will be stored.

Figure 5.6: Creating Dataset

7) Display Dataset: Figure 5.7 shows the created and saved dataset
displayed on the page.

Figure 5.7: Displaying Dataset

International Journal of Innovation Scientific Research and Review, Vol. 06, Issue 11, pp.7338-7352 November 2024 7350

8) Data Visualization: Under this, different parts of the system are
represented in a graphical view for traffic analysis as shown in
Figure 5.8. It consists of the number of vehicles in each lane,
traffic flow in each lane, green light time, traffic flow ratio, total
traffic flow, and optimum cycle time.

Figure 5.8: Data Visualization

9) Number of vehicles in Each lane: Figure 5.9 entails graphs

showing the number of vehicles in each lane in the 100-minute
time frame that was given.

Figure 5.9: Graphs of Lanes

10) Total Traffic Flow: The Figure 5.10 shows the flow of traffic on

each lane.

Figure 5.10: Traffic flow

11) Optimum Cycle Time: The optimum cycle time shows how much
priority is given to each lane in each second. This can be
compared to how much traffic the system has reduced compared
to the existing system.

Figure 5.11: Cycle Time

12) Green Light On Time in Each Lane: Figure 5.12 depicts graphs

showing how much time the vehicles on each lane waited.

Figure 5.12: On Time

CONCLUSION AND FUTURE WORK

This thesis provides insight into how artificial intelligence can improve
traffic control and safety. It highlights the potential of using YOLOv5
and AlexNet V3 models to enhance traffic flow and safety measures,
demonstrating the feasibility of integrating AI into urban traffic
management. The main goal was to address road traffic accidents
caused by negligent driving and congestion from increasing
population and vehicles, developing a model to enhance road safety
and traffic management. The research shows how AI can
revolutionize traffic management by providing forecasts, accurately
categorizing vehicles, and dynamically adjusting signals to reduce
congestion and prevent accidents.

Future studies should assess the long-term effects of enhancing the
traffic control system by broadening the dataset and exploring neural
network models for improved accuracy, focusing on real-time traffic
management to ease congestion. Integrating the system with online
platforms can provide up-to-date traffic information and prioritize
emergency vehicles, influencing planning and infrastructure upgrades
for safety and efficiency. Public engagement is essential for system
improvement, considering reduced emissions from optimized mobility.

International Journal of Innovation Scientific Research and Review, Vol. 06, Issue 11, pp.7338-7352 November 2024 7351

The system does not work up to expectations in low-light conditions.
Overcoming this would require switching over to a hard-coded system
or night vision cameras could be installed to keep the dynamic
system working at night.

The system’s scalability can extend beyond urban areas, addressing
data collection challenges. Although the algorithm performs well in
daylight, it struggles in low-light conditions. Data augmentation
techniques and methods like illumination maps can enhance
performance. Finally, low vehicle volume on one side may lead to
longer wait times, which should be addressed in future plans.

BIBLIOGRAPHY

[1] G. Orosz, B. Krauskopt, and R. Wilson, “Traffic jam dynamics

in a car following model with reaction-time delay and
stochasticity of drivers,” IFAC Proceedings Volumes (IFAC-
PapersOnline), vol. 6, 2006.

[2] A. Kanungo, A. Sharma, and C. Singla, “Smart traffic lights
switching and traffic density calculation us-ing video
processing,” in 2014 Recent Advances in Engineering and
Computational Sciences (RAECS), pp. 1–6, 2014.

[3] G. S. Khekare and A. V. Sakhare, “A smart city framework for
intelligent traffic system using vanet,” in 2013 International
Mutli-Conference on Automation, Computing, Communication,
Control and Com-pressed Sensing (iMac4s), pp. 302–305,
2013.

[4] A. S. Salama, B. K. Saleh, and M. M. Eassa, “Intelligent cross
road traffic management system (icrtms),” in 2010 2nd
International Conference on Computer Technology and
Development, pp. 27–31, 2010.

[5] H. Zhao, X. Zheng, and W. Liu, “Intelligent traffic control
system based on dsp and nios ii,” in 2009 International Asia
Conference on Informatics in Control, Automation and
Robotics, pp. 90–94, 2009.

[6] V. Chava, S. S. Nalluri, S. H. Vinay Kommuri, and A.
Vishnubhatla, “Smart traffic management system using yolov4
and mobilenetv2 convolutional neural network architecture,” in
2023 2nd International Conference on Applied Artificial
Intelligence and Computing (ICAAIC), pp. 41–47, 2023.

[7] T. D. Nath, “Iot based road traffic control system for
bangladesh,” International Journal of Recent Technology and
Engineering, vol. 10, pp. 60–66, May 2021.

[8] P. Sanjai, J. J. Sam, S. Iyengar, and K. Kalimuthu,
“Ambulance detection in traffic signals using image
processing,” in 2023 5th International Conference on Inventive
Research in Computing Applications (ICIRCA), pp. 927–931,
2023.

[9] G. M. Bhoomika, “Ambulance detection using image
processing,” International Journal of Advanced Research in
Science, Communication and Technology (IJARSCT), 2022.

[10] K. Agrawal, M. Nigam, S. Bhattacharya, and G. Sumathi,
“Ambulance detection using image processing and neural
networks,” vol. 2115, no. 1, p. 012036, 2021.

[11] S. Deepajothi, D. P. Rajan, P. Karthikeyan, and S. Velliangiri,
“Intelligent traffic management for emer-gency vehicles using
convolutional neural network,” vol. 1, pp. 853–857, 2021.

[12] M. M. Gandhi, “Smart control of traffic light using artificial
intelligence,” in Proc. 5th IEEE Inter-national Conference on
Recent Advances and Innovations in Engineering-ICRAIE
2020, 2020. IEEE Record#51050.

[13] A. P. Rangari, A. R. Chouthmol, C. Kadadas, P. Pal, and S. K.
Singh, “Deep learning based smart traffic light system using
image processing with yolo v7,” in 2022 4th International
Conference on Circuits, Control, Communication and
Computing (I4C), (Bangalore, India), pp. 129–132, 2022.

[14] K. Zhang, M. Sun, T. X. Han, X. Yuan, L. Guo, and T. Liu,
“Residual networks of residual networks: Multilevel residual
networks,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 28, pp. 1303–1314, June 2018.

[15] L. Hu, “An improved yolov5 algorithm of target recognition,” in
2023 IEEE 2nd International Confer-ence on Electrical
Engineering, Big Data and Algorithms (EEBDA), (Changchun,
China), pp. 1373– 1377, 2023.

[16] S. Xu, Z. Guo, Y. Liu, J. Fan, and X. Liu, “An improved
lightweight yolov5 model based on attention mechanism for
face mask detection,” Journal Name, September 2022.

[17] R. Harshitha, R. Chandan, K. Poornima, U. N. Navyashree,
and P. S. Gowda, “Traffic light switching by traffic density
measurement using image processing technique,”
International Journal of Innovative Research in Electrical,
Electronics, Instrumentation and Control Engineering, vol. 5,
May 2017.

[18] S. S. Patra, S. S. Alam, S. Chandra, and H. N. Pratihari, “A
survey on digital images zooming tech-niques,” International
Journal of Innovative Research and Studies, vol. 3, no. 3, pp.
865–872, 2014.

[19] R. R. Hoare and D. Smetana, “Accelerating sar processing on
cots fpga hardware using c-to-gates de-sign tools,” in 2014
IEEE High Performance Extreme Computing Conference
(HPEC), (Waltham, MA, USA), pp. 1–6, 2014.

[20] “Digital image processing based intelligent traffic light,” Dec.
16 2019. [Accessed: Feb. 16, 2024].

[21] G. Yamini, “Smart traffic control system using canny edge
detection algorithm.” MCA Project Report, University College
For Women, Osmania University, 2022.

[22] P. K. Yadav et al., “Assessing the performance of yolov5
algorithm for detecting volunteer cotton plants in corn fields at
three different growth stages,” 2022. [Online]. Available:
https://arxiv.org/abs/2208.00519. [Accessed: Feb. 16, 2024].

[23] S. Tilley, Systems Analysis and Design. United States of
America: [Publisher], 12th ed., 2019.

[24] S. N. Mahalank, K. B. Malagund, and R. M. Banakar, “Non
functional requirement analysis in iot based smart traffic
management system,” in 2016 International Conference on
Computing Communication Control and automation
(ICCUBEA), (Pune, India), pp. 1–6, 2016.

[25] Wikiversity, “Raspberry Pi — Wikiversity,” 2021. [Online;
accessed 21-February-2021].

[26] University of Oslo, “Introduction to c++ and opencv,” 2018.
Accessed on Mar. 6, 2024.

[27] R. R. Dennis, A. Wixom, and B. Roth, System Analysis and
Design. John Wiley & Sons, Inc., 4th ed., 2009.

International Journal of Innovation Scientific Research and Review, Vol. 06, Issue 11, pp.7338-7352 November 2024 7352

