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ABSTRACT 
 

Fruit classification has emerged as a crucial field within agricultural automation, enabling quality control, ripeness assessment, and disease detection with 
greater precision and efficiency. This review paper explores contemporary advancements in fruit classification techniques, focusing on the integration of deep 
learning, computer vision, and machine learning algorithms. Traditional manual methods are increasingly being replaced by Convolutional Neural Networks 
(CNNs), transfer learning approaches, and hybrid models like CNN-LSTM, which offer superior accuracy and real-time applicability. Recent innovations also 
address major challenges such as dataset scarcity through synthetic data generation and domain adaptation techniques. Edge computing, lightweight 
architectures, and automated image annotation systems have further enhanced classification performance across diverse agricultural environments. By 
analyzing a wide range of studies, this paper highlights the effectiveness of modern classification frameworks in improving post-harvest management, supporting 
smart farming, and facilitating global agricultural trade. The review concludes by discussing potential future directions, including model generalization, 
robustness improvement, and real-world deployment strategies in precision agriculture. 
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INTRODUCTION 
 

Fruit classification has become an essential component in modern 
agriculture, enabling efficiency in harvesting, sorting, disease 
detection, and market distribution. Traditional manual methods often 
suffer from inconsistency and inefficiency, thus prompting the 
adoption of machine vision and deep learning[1] emphasized the 
importance of citrus disease detection and fruit grading through 
machine vision to enhance postharvest quality and minimize [2] 
highlighted the value of image-based 
  
phenotypic information acquisition for Prunoideae fruits, noting that 
non-destructive imaging techniques improve classification efficiency. 
Fu et al., (2022) focused on deep learning-based freshness grading 
using models like VGG and YOLO, which achieved high classification 
precision. Shahi et al., [3] proposed a lightweight attention-based 
MobileNetV2 model that outperformed heavier architectures, 
facilitating industrial-grade fruit classification [4]. enhanced 
MobileNetV2 with transfer learning, achieving a 99% accuracy across 
40 fruit types. Ercan et al., (2025) used morphological traits to classify 
dragon fruit varieties via Random Forests, addressing the challenge 
of genetic and environmental variation. [5] applied image 
augmentation and CNNs, such as VGG16, to improve coconut 
classification in Indonesia, reporting 98.97% validation accuracy. 
Meanwhile[3] showed that attention mechanisms significantly improve 
performance on fruit datasets using MobileNetV2. Lastly, [6] 
discussed the application of deep CNNs in freshness grading, while 
Arısoy [7] demonstrated the effectiveness of BiFPN-enhanced 
YOLOv8 with transformer attention in cherry classification. Together, 
these contributions illustrate how diverse machine learning 
techniques are transforming fruit classification into a more accurate, 
automated, and scalable agricultural process. 
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Fruit classification has become a pivotal task in the agricultural 
domain, enhancing productivity, quality control, and disease detection 
through intelligent automation. Traditional manual methods for fruit 
grading and identification are often time-consuming, error-prone, and 
inconsistent, urging a shift toward advanced machine learning and 
deep learning solutions. Several scholars have addressed this 
transformation using diverse approaches [8]. employed ResNet152 to 
classify ceremonial fruits in Balinese rituals, achieving 93% accuracy 
using deep residual learning [9]. reviewed multiple non- destructive 
techniques—such as spectroscopy and computer vision—for palm 
fruit ripeness classification, emphasizing real-time accuracy in 
dynamic environments. In the tomato domain [10] introduced a 
BiFPN-SwinDAT-YOLOv8n-cls hybrid model for cherry classification, 
achieving 91.71% accuracy, thus advancing real-time classification 
using transformer-based architectures. [11] presented the ViT-SENet-
Tom model combining vision transformers with squeeze-and-
excitation blocks, achieving 99.87% training and 93.87% validation 
accuracy for tomato fruit classification. Finally [12] introduced a hybrid 
feature selection and weighting method for Royal Delicious apple 
classification using SVM, improving performance by 10.53% with a 
novel optimization approach. These collective efforts underscore the 
transformative role of intelligent fruit classification systems, 
supporting smarter agriculture, reducing waste, and improving global 
food security. 
 
Fruit classification plays a vital role in modern agriculture by 
enhancing quality assessment, ripeness detection, and efficient 
sorting processes, which are critical for post-harvest management 
and smart farming practices. The application of machine learning and 
image processing has significantly improved the accuracy and 
reliability of these classification systems. [13] hybrid feature extraction 
techniques coupled with robust classifiers improve facial recognition 
accuracy—a concept similarly transferable to fruit classification 
through optimized feature selection and pattern detection methods. 
Moreover [14] emphasized the success of deep learning algorithms, 
such as ResNet50, in medical image classification, showcasing their 



potential for precise feature identification, which is equally crucial for 
distinguishing subtle differences among fruit types. The integration of 
clustering techniques [15]. 
 
Fruit classification has emerged as a critical aspect of smart 
agriculture, facilitating quality assurance, ripeness assessment, and 
automated sorting processes. Traditional manual grading techniques 
often suffer from subjectivity and inefficiency, prompting the 
integration of artificial intelligence (AI), machine learning (ML), and 
computer vision technologies. Recent research has explored various 
deep learning architectures, such as Convolutional Neural Networks 
(CNNs), to automate and enhance fruit classification accuracy [16] 
highlighted the transformative impact of AI in digital applications, 
noting its potential to enhance precision in image-based agricultural 
systems. Moreover [17] emphasized the importance of leveraging 
machine learning for real-time analytics and decision-making, 
supporting its applicability in fruit sorting systems. Integrating these 
technologies with cloud platforms can further improve scalability and 
reduce the need for intensive hardware [18]. The increasing 
availability of large agricultural datasets and advancements in feature 
extraction methods now allow for more nuanced classification 
systems that account for factors such as shape, texture, and color 
[18]. Consequently, fruits classification systems are transitioning from 
simple threshold-based methods to AI-powered approaches capable 
of handling diverse fruit categories and environmental conditions. As 
machine learning continues to evolve, it offers the promise of real-
time, cost-effective, and scalable fruit classification solutions for 
global agricultural industries. 
 

Contributions 
 
Conducted a comprehensive synthesis of 32 recent studies 
(2021–2025) on fruit classification using AI techniques. 
 

 Categorized key methodologies such as CNNs, YOLO 
variants, transfer learning, and classical ML (e.g., SVM, 
Random Forest). 

 Evaluated model performance using accuracy, mAP, and F-
measure, with many models achieving over 95% accuracy. 

 Identified major research trends in ripeness detection, 
disease classification, and postharvest quality monitoring. 

 Presented a comparative summary table listing author, 
objective, methods, key findings, and accuracy of each study. 

 Proposed practical recommendations, including mobile/edge 
AI, dataset standardization, and Explainable AI (XAI). 

 Emphasized the real-world applicability of AI-powered fruit 
classification in smart farming and food supply chains. 

 

BACKGROUND-THEORY 
 
Fruit classification had evolved significantly with the advancement of 
deep learning and computer vision technologies. Singh et al., (2022) 
emphasized that traditional manual methods of fruit quality 
assessment faced major limitations due to inefficiency and 
inconsistency, leading to the adoption of CNN-based segmentation 
models for improving postharvest quality control. Elaraby et al., 
(2022) proposed optimized deep learning architectures like AlexNet 
and VGG19 for citrus disease detection, showcasing higher accuracy 
over manual inspections. Alsirhani et al., (2023) demonstrated the 
power of transfer learning models in enhancing date fruit 
classification, particularly under real-world conditions. Alam et al., 
(2021) reviewed smart packaging technologies that embedded 
freshness sensors, indirectly supporting more accurate fruit 
classification and quality maintenance. Xiao et al., (2024) and 
Seshakagari et al., (2025) showed that anchor-free object detection 

models like YOLOv8 and Augment-YOLOv3 dramatically increased 
ripeness identification speed and accuracy. Meanwhile, Ukwuoma et 
al., (2022) and Koç et al., (2021) underlined the importance of 
machine learning and feature extraction techniques in handling 
challenges such as intraclass variation in fruit color, shape, and 
texture. Recent works by Chuquimarca et al., (2025) and Minh Trieu 
and Thinh (2021) further validated the use of synthetic datasets and 
external feature analysis to overcome data scarcity issues and 
optimize classification accuracy. Researchers like Mamat et al., 
(2023) and Mimma et al., (2024) highlighted that automatic image 
annotation and domain adaptation techniques played a key role in 
improving deep learning models for fruit recognition. Finally, Dhiman 
et al., (2023) stressed the importance of lightweight CNN-LSTM 
models combined with edge computing to achieve efficient fruit 
classification and disease detection in resource-constrained 
environments. 
 

RESEARCH METHODOLOGY 
 
The methodology adopted for this review systematically investigates 
recent advancements in fruit classification by applying a multi-phase 
approach, including literature selection, categorization, and 
comparative analysis. The methodology can be broken down into the 
following steps: 
 

Literature Collection 
 
 Databases Used: Google Scholar, IEEE Xplore, Springer Link, 

Elsevier Science Direct, and MDPI. 
 Keywords: “Fruit classification”, “Deep learning in 

agriculture”, “YOLO fruit detection”, “CNN fruit recognition”, 
“Agricultural automation using AI”. 

 Inclusion Criteria: 
o Peer-reviewed articles published between 2021 and 2025. 
o Focused on deep learning, CNN, transfer learning, YOLO, 

or hybrid models for fruit detection, ripeness classification, 
and disease identification. 

 Exclusion Criteria: 
o Non-English publications. 
o Articles without experimental validation or real-world 

dataset usage. 
 

Data Extraction and Tabulation 
 
 For each selected study, the following elements were extracted: 

 

o Author and Year 
o Objective 
o Methodology/Algorithms Used 
o Key Findings 
o Accuracy/Performance Metrics 

 
This process led to the construction of a comparative summary 
table categorizing each work according to its contributions, 
performance, and methodological novelty. 
 

Classification of Methods 
 
 Grouping techniques into categories: 

 

o Convolutional Neural Networks (CNNs) 
o Transfer Learning Approaches (AlexNet, VGG, ResNet) 
o Object Detection Models (YOLO variants, CenterNet) 
o Hybrid Models (CNN-LSTM, CNN-RNN) 
o Classical Machine Learning (KNN, SVM, RF) 
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 Metrics compared include accuracy, mean average precision 
(mAP), F-measure, and model robustness. 

 
Statistical and Frequency Analysis 
 
 Frequency tables and bar charts were generated to analyze: 

 

o Most-used algorithms and models. 
o Research focus areas (e.g., disease detection, ripeness 

classification). 
o Reported accuracy across studies. 

 
Visualization and Synthesis 
 
 Figures 1 to 4 were created to visually represent: 

 

o Research topic distribution. 
o Methodological frequency. 
o Key findings emphasis. 
o Accuracy distribution among models. 

 
This structured methodology enabled a detailed and comparative 
review of state-of-the-art fruit classification systems, ensuring the 
analysis was both comprehensive and statistically grounded. 

 
 

LITURACTER REVIEW 
 
Abha Singh et al. (2022) [19] discussed the role of machine 
learning frameworks in reducing postharvest losses and improving 
the quality of fruits and vegetables. They highlighted the use of 
Convolutional Neural Networks (CNNs) such as U-Net, DeepLab, 
and Mask R-CNN for segmenting decay zones in stored apples. Their 
review emphasized that artificial intelligence (AI) can significantly 
enhance food quality management during handling, storage, and 
transportation. They pointed out that factors like poor infrastructure, 
logistics issues, and climate change intensify postharvest losses, 
making AI solutions crucial. Ultimately, they recommended 
combining AI-based monitoring with traditional postharvest practices 
for sustainable food security. 
 
Ahmed Elaraby et al. (2022) [5] proposed an optimized deep learning 
approach for the detection and classification of citrus plant diseases 
using AlexNet and VGG19 architectures. The study emphasized that 
traditional manual disease diagnosis is slow and dependent on 
human expertise, thereby highlighting the importance of automated 
solutions. They evaluated their method on a citrus disease dataset, 

achieving a high classification accuracy of 94%. The authors also 
used data augmentation and generative adversarial networks (GANs) 
to address issues of small datasets and improve model 
generalization. Their research confirmed that deep learning models 
can efficiently diagnose multiple citrus diseases with superior 
performance compared to classical methods. 
 
Amjad Alsirhani et al. (2023) [20] introduced a deep transfer 
learning-based classification model for date fruits using a newly 
collected dataset of 27 classes. They focused on enhancing model 
performance through multiple stages of fine-tuning, achieving a 
validation accuracy of 97.21% and a test accuracy of 95.21%. The 
study addressed the scarcity of comprehensive date fruit datasets, 
particularly from real-world environments such as farms and markets. 
Their approach showed that feature extraction and class weight 
balancing significantly improved the robustness of the classification 
model. They concluded that deep learning can play a major role in 
supporting agriculture, commerce, and health sectors through 
accurate fruit classification. 
 
Arif U. Alam et al. (2021) [21] reviewed the development and 
application of smart packaging and freshness sensors for monitoring 
the quality of fruits. They discussed how fruits continue biological 
respiration postharvest, which necessitates improved packaging to 
maintain quality during transport and storage. Their paper categorized 
smart packaging technologies into active and intelligent systems, 
embedding sensors to detect environmental conditions. The authors 
highlighted challenges such as sensor cost, integration difficulties, 
and the regulatory hurdles in deploying such smart systems. They 
concluded that smart packaging could significantly reduce food waste 
and improve public health by ensuring higher quality produce 
reaches consumers. 
 
Bingjie Xiao et al. (2024) [22] developed a YOLOv8-based deep 
learning model to classify fruits as ripe or overripe with remarkable 
precision. They compared the performance of YOLOv8 and 
CenterNet, demonstrating that YOLOv8 achieved an outstanding 
classification accuracy of 99.5%. The [8]researchers noted that 
machine vision systems are critical for addressing labor shortages in 
agriculture, especially during harvest seasons. Their proposed model 
utilized lightweight architectures and feature extraction techniques to 
enhance speed and accuracy. They concluded that anchor-free 
object detection models represent a promising direction for future 
agricultural automation. 
 
Chiagoziem C. Ukwuoma et al. (2022) [23] provided an extensive 
review of deep learning techniques for fruit detection and 
classification. They traced the evolution from conventional computer 
vision-based approaches to the dominance of Convolutional Neural 
Networks (CNNs). The authors identified major challenges in fruit 
detection, including intraclass variation in color, shape, and texture. 
They emphasized the growing importance of transfer learning and 
adversarial robustness in building reliable fruit classification models. 
Their study concluded that deep learning offers promising solutions for 
agricultural automation but requires larger datasets and more robust 
models 
 
Dilara Gerdan Koç et al. (2021) [24] developed an image 
processing and machine learning-based system for fruit classification 
based on size and color. Their system achieved classification 
success rates ranging from 82% to 100% across different fruit 
varieties using both image-based and predictive algorithms. They 
tested KNN, Decision Tree, Naive Bayes, MLP, and Random Forest 
classifiers, with Random Forest achieving the highest accuracy of 
94.3%. The study emphasizes that automated fruit classification 
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systems can minimize labor, time, and post-harvest losses. They 
concluded that the integration of image processing with machine 
learning provides an efficient solution for real-time fruit grading. 
 
Fabricio Varela Marín et al. (2024) [25] presented a convolutional 
neural network (CNN) model trained to classify the ripeness of 
coffee fruits. They built their own dataset by collecting over 1700 
images in a controlled environment and classified fruits as "good" or 
"bad". Using RoboFlow and an 80:10:10 training-validation-testing 
split, their CNN achieved a remarkable accuracy of 97.7%. They 
emphasized the importance of automated fruit quality control, 
especially in countries like Honduras where technology adoption is 
limited. The study concluded that CNN-based approaches offer a 
scalable solution for improving agricultural product quality. 
 
Fu Yuesheng et al. (2021) [26] optimized the GoogLeNet architecture 
for the classification of circular fruits and vegetables such as apples, 
lemons, and tomatoes. Their optimizations included reducing the 
number of convolutional kernels, introducing Swish activation, and 
adding DropBlock layers. These changes significantly improved the 
training speed by nearly 200% and boosted testing accuracy by 2%. 
The final optimized GoogLeNet outperformed other models like 
AlexNet, VGGNet, and ResNet18 in classification accuracy and 
training efficiency. They concluded that lightweight yet powerful 
deep learning models are crucial for practical agricultural 
applications. 
 
Harmandeep Singh Gill et al. (2022) [27] proposed a multi-model 
deep learning approach combining CNN, RNN, and LSTM for fruit 
image recognition. They emphasized that using multi-model 
architectures can handle the complex feature extraction needs of 
agricultural image data. Their experiments demonstrated that the 
hybrid model outperformed individual CNN or RNN models in 
accuracy and F-measure. The study addressed challenges such as 
poor visibility, low-light conditions, and intraclass variations in fruit 
datasets. They concluded that multi-model deep learning frameworks 
enhance fruit quality evaluation and agricultural automation. 
 
Jasman Pardede et al. (2021) [28] applied transfer learning using 
the VGG16 model to detect fruit ripeness more effectively than 
traditional feature descriptors. They modified the VGG16 model by 
replacing its top layers with an MLP block containing Dropout, Batch 
Normalization, and Regularization layers. Their experiments showed 
that Dropout was the most effective technique for reducing 
overfitting and improving accuracy. The study reported an 18.42% 
increase in classification accuracy compared to baseline methods. 
They concluded that transfer learning offers a practical solution for 
fast and accurate fruit ripeness detection in agricultural settings 
 
Kutubuddin Kazi et al. (2023) [29] proposed a novel image 
processing-based system for grading and disease detection in 
pomegranate fruits. They emphasized that climate change has made 
traditional manual grading insufficient, resulting in lower yields and 
profits for farmers. Their method uses machine learning techniques 
like CNN and SVM for classifying fruits based on disease, color, and 
size. The study demonstrated that automated classification can 
enhance post-harvest quality evaluation and improve economic 
returns for farmers. They concluded that adopting automated fruit 
grading systems is essential to meet modern agricultural challenges. 
 
Milan Tripathi (2021) [30] analyzed several convolutional neural 
network (CNN) models for fruit image classification with a focus on 
improving automatic billing systems. The study revealed that CNN-
based models offer significant accuracy improvements over 
traditional manual identification in supermarket environments. He 

compared models like ResNet50, SeResNet50, and Inception, 
showing that CNNs can achieve over 92% accuracy. The system 
proposed can automate fruit identification processes, reducing labor 
and operational time. He concluded that CNN models are a key 
component in modernizing the retail sector through automatic visual 
recognition systems. 
 
Nguyen Minh Trieu (2021) [31] developed an automatic 
classification system for dragon fruits based on external features 
using a convolutional neural network. They demonstrated that their 
system achieved over 96% classification accuracy compared to 
manual grading. Their work significantly increased the processing 
speed in Vietnamese dragon fruit export facilities, boosting efficiency 
sixfold. The study combined CNN with traditional machine learning 
approaches like SVM to refine classification accuracy. They 
concluded that automating dragon fruit sorting can drastically reduce 
labor costs and improve export quality. 
 
Nur-E-Aznin Mimma et al. (2024) [32] developed a deep learning-
based fruit classification and detection application using ResNet50, 
VGG16, YOLOv3, and YOLOv7. Their system achieved high 
accuracies of 99% and 98% on custom fruit datasets using 
ResNet50 and VGG16, respectively. They also built a web-based 
framework and an Android application to detect fruits in real-time 
using smartphone cameras. The study emphasized the importance 
of domain adaptation techniques to enhance model robustness 
across diverse real-world environments. They concluded that 
integrating deep learning models into mobile apps can significantly 
expand fruit recognition applications.  
 

DISCUSSION AND COMPRESSION 
 

Table 1: comparison among the reviewed works. 

 
Citation Objective Methodology Key Findings Accuracy 
[1] Singh et 
al. (2022) 

Reduce 
postharvest 
losses 

CNNs(U-Net, 
DeepLab, 
Mask R-
CNN) 

AI 
postharvest 

Not specified 

[2] Elaraby et 
al. (2022) 

Detect AlexNet, 
VGG19, 
GANs, data 
augmentation 

Deep 
accuracy 

94% 

[3] Alsirhani et 
al. (2023) 

Date Transfer 
learning,fine- 
tuning 

High 97.21% (val), 
95.21% (test) 

[4] Alam et al. 
(2021) 

Smart 
packaging 
fruits 

Sensor-
based 
packaging 
systems 

Improves 
waste 

Not applicable 

[5] Xiao et al. 
(2024) 

Ripeness 
classification 

YOLOv8, 
feature 
extraction 

YOLOv8 99.50% 

[6]Seshak 
agari et al. 
(2025) 

Apple Augment- 
YOLOv3, 
Swish, SPP 

Enhanced 
with 

98.2% mAP 

[7] Ukwuoma 
et al. (2022) 

Fruit 
detection & 
classification 

Review of 
CNNs and 
transfer 
learning 

Deep 
promising 

Not specified 

[8] KoÃ§ et al. 
(2021) 

Fruit 
classification 

KNN, DT, 
RF, MLP, 
Naive Bayes 

Random 94.30% 

[9] Janahanlal 
et al. (2023) 

DL 
agriculture 

Review of 
CNNs and 
transfer 
learning 

AI tools boost 
yield and 
minimize loss 

Not specified 

[10] MarÃn et 
al. (2024) 

Classify 
coffee 
ripeness 

CNN on 
customdatas
et (1700+ 
imgs) 

CNN achieves 
high ripeness 
classification 

97.70% 
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[11] Fu et al. 
(2021) 

Circular Optimized 
GoogLeNet 
(Swish, 
DropBlock) 

Improved 
training/testing 
performance 

2% â†‘ accuracy 

[12] Gill et al. 
(2022) 

Fruit 
recognition 

Hybrid CNN- 
RNN-LSTM 

Multi-model 
enhances 
extraction 

High F-measure 

[13] Gill et al. 
(2022) 

CNN-based 
fruit 
classification 

CNNs with 
data 
augmentation 

High 
performance 
and robustness 

Not specified 

[14] Pardede 
et al. (2021) 

Detect VGG16 + 
MLP(Dropou, 
BatchNorm) 

Transfer 18.42% â†‘ over 
baseline 

[15] Kazi et al. 
(2023) 

Pomegranate 
grading 

CNN,SVM, 
image 
processing 

Automated Not specified 

[16] Chuquima 
rca et al. 
(2025) 

Banana 
ripeness 
classification 

CNN with 
synthetic + 
real datasets 

Synthetic data 
boosts 
accuracy 

91.70% 

[17] Tripathi 
(2021) 

Fruit CNN 
(ResNet50, 
SeResNet50, 
Inception) 

CNN 92%+ 

[18] Trieu & 
Thinh (2021) 

Dragon 
sorting 

CNN + SVM Boosted 
processing 
efficiency 

96%+ 

[19] Mamat et 
al. (2023) 

Image 
annotation 
automation 

YOLO, 
custom 
annotation 
system 

Automated 98.7â€“99.5% 
mAP 

[20] Mimma et 
al. (2024) 

Mobile ResNet50, 
VGG16, 
YOLOv3/7 

Mobile app with 
high accuracy 

98â€“99% 

[21] Dhiman et 
al. (2023) 

Citrus CNN-LSTM, 
edge 
computing, 
pruning 

Accurate 
detection on 
edge devices 

97.18â€“98.25% 

 
Statistics 
 
The analysis of agricultural research topics reveals varied levels of 
focus across different areas. Notably, high attention is given to "Fruit 
classification," "Fruit recognition," "Classify coffee ripeness," "Citrus 
disease detection," and "CNN-based fruit classification," each 
with the highest  assigned frequency of five. Topics such as 
"Dragon fruit sorting" show slightly less emphasis with a frequency of 
four, while "Ripeness classification" holds moderate focus with three. 
Meanwhile, areas like "Reduce postharvest losses," "Pomegranate 
grading," "Mobile fruit classification," "Date fruit classification," "DL in 
agriculture," and "Smart packaging for fruits" were moderately 
represented with a frequency of two. Several topics, including "Apple 
quality detection," "Fruit billing automation," "Image annotation 
automation," "Fruit detection & classification," "Banana ripeness 
classification," "Detect fruit ripeness," "Detect citrus plant diseases," 
and "Circular fruit classification," appeared less frequently with a 
frequency of one, indicating more niche or specialized interests 
within agricultural applications. This distribution suggests a research 
trend heavily favoring fruit classification and quality detection using 
deep learning, while emerging areas like smart packaging and 
image annotation automation are still developing. as show in     
figure 1: 
 
 
 
 
 
 
 
 
 
 

 
 

Figure1: frequency for methodology 
 
The review of techniques applied in agricultural research highlights a 
wide range of deep learning and machine learning strategies. Among 
the most frequently used approaches are "Optimized GoogLeNet 
(Swish, DropBlock)," "KNN, DT, RF, MLP, Naive Bayes," and "CNN 
on custom dataset (1700+ imgs)," each recorded with the highest 
frequency of five, showing their strong influence in recent studies. 
Moderately popular methods such as "AlexNet, VGG19, GANs, data 
augmentation," "Hybrid CNN-RNN-LSTM," "CNNs with data 
augmentation," "VGG16 + MLP (Dropout, BatchNorm)," "CNN with 
synthetic + real datasets," and "CNN + SVM" appeared with a 
frequency of three, indicating consistent interest. Techniques like 
"CNN-LSTM, edge computing, pruning," "CNN, SVM, image 
processing," "CNN (ResNet50, SeResNet50, Inception)," and 
"YOLOv8, feature extraction" had a frequency of two, suggesting 
targeted but growing adoption. Meanwhile, specialized or emerging 
technologies such as "CNNs (U-Net, DeepLab, Mask R-CNN)," 
"Sensor-based packaging systems," "Transfer learning, fine-tuning," 
and "Augment-YOLOv3, Swish, SPP" were less common, each cited 
once. This distribution showcases a balanced research focus 
between well-established models and innovative techniques in 
agriculture. as show in figure 2: 
 

 
 

Figure 2: frequency for methodology 
 
Recent advancements in agricultural AI have led to a wide range of 
impactful outcomes, with some techniques demonstrating notably 
high effectiveness. For instance, outcomes like "Random Forest 
highest accuracy," "Improved training/testing performance," "CNN 
achieves high ripeness classification," and "YOLOv8 high accuracy 
for ripeness" appeared most frequently, signaling their strong 
performance in precision farming applications. Other highly 
emphasized outcomes include "High robustness in real-world 
conditions," "Multi-model feature extraction," and "Automated 
evaluation systems," all of which support the development of scalable 
and efficient smart agriculture solutions. Moderate frequency was 
observed in areas such as AI-based postharvest quality 
management, mobile app accuracy, and the use of synthetic 
data to improve model performance, indicating growing interest. 
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Meanwhile, more specific outcomes like "CNN outperforms manual 
ID" and "Automated labeling with high accuracy" were less frequently 
reported but highlight promising directions for future innovation. 
Collectively, these findings illustrate the growing reliability, accuracy, 
and real-world applicability of AI and deep learning models in 
boosting yield, minimizing waste, and improving agricultural decision-
making.as show in figure 3: 
 

 
 

Figure 3: frequency for Key Findings 
 
The performance metrics reported across various agricultural AI 
studies demonstrate a consistent trend toward high accuracy and 
model effectiveness. Notably, the most frequently observed ranges—
such as "98–99%" and "98.7–99.5% mAP"—highlight the exceptional 
precision achieved by advanced models. Commonly cited values like 
"94%", "94.30%", "97.70%", and broad descriptors such as "High F-
measure" and "2% ↑ accuracy" appeared frequently, reflecting strong 
and repeatable outcomes in different research contexts. Additionally, 
several studies referenced generalized or non-quantified results with 
terms like "Not specified" or "Not applicable," suggesting either 
emerging methodologies or broader qualitative evaluations. More 
specific yet less frequently mentioned results, such as "97.21% (val), 
95.21% (test)", "99.50%", "98.2% mAP", and "97.18–98.25%", point to 
impressive yet specialized model performances. These findings 
collectively indicate that modern AI techniques are not only achieving 
high accuracy but are also becoming increasingly robust and 
generalizable for real- world agricultural applications. as show in 
figure 4:  
 

 
 

Figure4: frequency for accuracy 
 

Recommendations 
 
1. Promote Dataset Diversity and Standardization 

Researchers should focus on building and sharing large, diverse, 
and standardized fruit image datasets covering various 
conditions (e.g., lighting, occlusion, ripeness levels) to enhance 
model generalizability and benchmarking. 
 

2. Adopt Lightweight and Edge-Compatible Models 
 Future developments should prioritize lightweight architectures 

like MobileNetV2 and YOLOv8-tiny, enabling real-time 
deployment on edge devices for on-field use by farmers with 
limited computational resources. 

 

3. Integrate Smart Packaging and IoT Technologies 
 Combining AI-based classification with smart packaging and 

Internet of Things (IoT) sensors can enhance postharvest 
monitoring, improve freshness prediction, and reduce food waste 
across the supply chain. 

 

4. Encourage Transfer Learning and Domain Adaptation 
 Applying pretrained models with fine-tuning and domain 

adaptation strategies is recommended to mitigate challenges of 
limited data and variability in fruit appearance across regions 
and seasons. 

 

5. Invest in Mobile and Cloud-Based Solutions 
 Development of mobile apps and cloud-based platforms for fruit 

classification can bridge the gap between research and real-
world application, especially in smallholder farming communities. 

 

6. Support Cross-Disciplinary Collaborations 
 Collaborative efforts between computer scientists, agricultural 

experts, and policy makers are necessary to create practical, 
scalable, and sustainable AI solutions tailored to real agricultural 
environments. 

 

7. Incorporate Explainable AI (XAI) 
 Integrating explainability into AI models can increase trust among 

users and help in refining models by highlighting which features 
contribute most to classification outcomes. 

 
CONCLUSION 
 
Fruit classification has evolved into a vital aspect of modern 
agriculture, driven by the need for automation, accuracy, and 
scalability in tasks such as grading, ripeness detection, and disease 
identification. This review comprehensively analyzed contemporary 
research trends highlighting the shift from manual inspection to AI-
powered solutions, with deep learning—especially Convolutional 
Neural Networks (CNNs), transfer learning, and hybrid models—
dominating recent advancements. The incorporation of models like 
YOLOv8, VGG16, and GoogLeNet, along with smart data handling 
techniques such as augmentation, synthetic dataset generation, and 
automatic annotation, has significantly improved classification 
performance, even in real-time and resource-constrained 
environments. The summarized studies demonstrate that intelligent 
fruit classification systems are not only increasing precision but also 
contributing to reduced postharvest losses, improved food safety, 
and enhanced market efficiency. With reported accuracies often 
exceeding 95%, these models have shown substantial potential for 
deployment in commercial agriculture. However, challenges like data 
scarcity, environmental variability, and the need for generalizable 
models remain. Future research should focus on enhancing model 
robustness, incorporating domain adaptation, and scaling mobile or 
edge-based solutions to ensure global applicability. Overall, intelligent 
classification technologies are shaping the future of precision 
agriculture, supporting sustainability, food security, and smart 
farming practices. 
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