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ABSTRACT 
 

Accurate apple quality prediction is crucial for ensuring postharvest efficiency, consumer satisfaction, and sustainable agricultural practices. Traditional methods 
based on manual inspection and destructive testing are often subjective and inefficient, prompting the need for automated, data-driven approaches. This review 
explores modern technologies applied to apple quality prediction, including hyperspectral and near-infrared spectroscopy, machine learning algorithms, deep 
learning models like convolutional neural networks (CNNs), and genomic prediction methods such as QTL mapping and genome wide selection (GWS). Recent 
studies have demonstrated the effectiveness of combining spectral data with intelligent optimization techniques like particle swarm optimization (PSO) for      
real-time assessment of internal traits such as sweetness, firmness, acidity, and defect detection. Additionally, integrating genomic data has enabled the 
prediction of inherited quality traits, supporting advanced breeding programs. The review synthesizes findings from over twenty recent studies to highlight 
progress, challenges, and future directions in this field. It recommends the development of portable, field- deployable tools, standardized evaluation protocols, 
and multidisciplinary collaboration. Ultimately, the convergence of AI, spectroscopy, and genomics is transforming apple quality monitoring into a scalable, 
intelligent system suitable for modern precision agriculture. 
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INTRODUCTION 
 

Apple is one of the most widely consumed fruits globally, appreciated 
for its flavor, nutritional value, and commercial importance; however, 
traditional quality assessment methods, such as visual inspection and 
destructive sampling for attributes like firmness and sweetness, are 
time-consuming, subjective, and inefficient [1]. In response, 
researchers have developed non-destructive techniques—such as 
near- infrared (NIR) spectroscopy, hyperspectral imaging, and digital 
image analysis —which enable rapid, accurate, and chemical-free 
measurement of internal and external quality traits, including sugar 
content, acidity, polyphenols, and bruise detection[2],[3],[4],[5]. These 
innovations have laid the groundwork for integrating artificial 
intelligence (AI) and machine learning models into apple quality 
assessment, allowing for advanced predictive capabilities that 
forecast physical damage, shelf life, and nutritional properties based 
on sensor data [6],[7]. For instance, adaptive neuro-fuzzy inference 
systems (ANFIS) and 
  
partial least squares regression (PLSR) have been used to predict 
bruise volume and soluble solids content with high accuracy, while 
portable spectrometers and real-time mobile platforms have emerged 
to support on-site monitoring [8]. Collectively, these technologies 
mark a paradigm shift toward scalable, precise, and sustainable apple 
quality evaluation, merging the power of AI with non-invasive 
detection methods to meet the demands of modern agriculture and 
consumer expectations. The global apple industry demands efficient, 
accurate, and scalable quality assessment methods to ensure 
consumer satisfaction and reduce postharvest losses. Traditional  
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techniques, which involve visual inspection and destructive testing, 
are increasingly deemed inadequate due to their subjectivity, 
inefficiency, and the loss of usable produce [9].As data complexity in 
agriculture grows, researchers have turned to advanced information 
technologies like cloud computing and big data analytics to process, 
visualize, and manage large volumes of agricultural data effectively 
[10]. In parallel, artificial intelligence (AI) and machine learning (ML) 
models have revolutionized the landscape by enabling automated 
classification, prediction, and defect detection in fruits, thereby 
optimizing postharvest handling and storage systems [11].           
Non- destructive sensing technologies such as NIR, hyperspectral 
imaging, and digital image processing allow the internal and external 
quality of apples to be assessed without physical damage, fostering 
real -time monitoring and early decision-making in the supply 
chain[12],[13]. Moreover, blockchain integration into these smart 
systems promotes transparency and traceability, enhancing 
consumer trust and digital transformation in agri-businesses [14]. The 
integration of decentralized platforms, AI-enabled databases, and 
predictive models ensures that apple quality assessment transitions 
from manual, static methods to intelligent, dynamic systems capable 
of supporting sustainable and precision agriculture[15],[16]. 
 
Here is the main contribution: 
 
o Holistic Overview: It presents a unified review of techniques such 

as hyperspectral imaging, VIS/NIR spectroscopy, convolutional 
neural networks (CNNs), and genomic selection (GWS/QTL), 
emphasizing their roles in non-destructive apple quality 
assessment. 

o Comparative Analysis: It compares the performance of various 
models, including support vector regression, artificial neural 
networks, and fuzzy inference systems, highlighting their 
accuracy, use-cases, and real-world applicability. 



o Integration of Genomic and Phenotypic Models: It explores how 
the fusion of genetic data and phenotypic prediction through 
modern AI models improves trait predictability and supports 
breeding programs. 

o Identification of Research Gaps: It identifies critical challenges in 
the scalability, environmental adaptability, and standardization of 
current models used in practical agricultural settings. 

o Strategic Recommendations: It proposes future directions 
including the development of portable tools, model 
generalization across environments, and cross-disciplinary 
collaboration to advance the field of apple quality prediction. 

 

BACKGROUND THEORY 
 
Traditional Quality Assessment Methods 
 

 Historically, apple quality was determined by visual inspection 
and manual measurement of size, color, and external blemishes. 

 Internal attributes such as firmness, sweetness (Brix content), 
and juiciness required destructive sampling, which leads to fruit 
loss. 

 Traditional methods are: 
o Labor-intensive and time-consuming 
o Highly subjective, leading to inconsistencies 
o Inefficient for large-scale industrial use 

 classical systems lacked the parallel processing capabilities 
needed to handle real-time agricultural data at scale[11],[9] 
 

Emergence of Non-Destructive Techniques 
 

 With the evolution of sensor technologies, non-destructive 
methods became prevalent, offering accurate, real-time quality 
analysis. 

 Examples include: 
o Hyperspectral Imaging (HSI): Captures reflectance spectra 

for internal quality estimation (sugar, acidity). 
o Near-Infrared (NIR) Spectroscopy: Estimates firmness and 

water content. 
o X-ray Imaging: Detects internal bruises, core damage, or 

worm infestation. 
o Machine Vision Systems: Classify external features (shape, 

color uniformity) using RGB and IR cameras. 
 These technologies reduce postharvest waste and enable full-

batch inspections. 
 emphasized the importance of cloud-enabled systems in 

managing non-destructive sensor data for smart grading 
solutions [3]. 
 

Application of Artificial Intelligence and Machine Learning 
 

 AI has revolutionized the fruit industry by enabling systems to 
learn from past data and predict quality outcomes. 

 Techniques include: 
o Convolutional Neural Networks (CNNs) for visual 

classification 
o Support Vector Machines (SVM) and Random Forests for 

multi-class prediction 
o K-means Clustering for sorting apples based on texture or 

color similarity 
 These systems automate grading, reduce human bias, and 

improve productivity. 
 
Predictive Modeling for Quality Forecasting 
 

 Predictive modeling aims to forecast future apple quality 
attributes, such as: 

o Ripeness progression 
o Shelf life estimation 
o Chill injury or decay under storage 

 Commonly used models: 
o Support Vector Regression (SVR) 
o Artificial Neural Networks (ANNs) 
o Time-series forecasting algorithms 

 Predictive models help producers and retailers optimize storage 
conditions, manage inventory, and reduce waste. 

 
Challenges and Future Directions 
 
 Despite the advantages, the deployment of AI-based non-

destructive systems faces several limitations: 
o Data requirements: Training accurate models demands 

large annotated datasets. 
o Environmental variation: Lighting, background noise, and 

apple orientation can impact prediction accuracy. 
o Model interpretability: Deep learning models are often 

“black boxes” with limited explain ability. 
o Hardware cost: High-end imaging and computing hardware 

are expensive for small farms. 
 Future solutions include: 

o Edge AI: Running models directly on embedded systems 
for real-time assessment 

o Transfer learning: Reusing pre-trained models to reduce 
annotation costs 

o Multi-modal fusion: Combining spectral, thermal, and visual 
data for improved accuracy 

o Blockchain integration: Enhancing traceability, data 
security, and consumer trust in the apple supply chain. 

 

LITERATURE REVIEW 
 
Abdelhameed Ibrahim et al. (2024)[17] examined the use of the 
binary Waterwheel Plant Algorithm (bWWPA) for feature selection 
and logistic regression for classifying apple quality attributes. Their 
research focused on evaluating multiple cultivation, harvesting, and 
post-harvest parameters like sweetness, acidity, juiciness, and 
crunchiness using a machine learning pipeline. The authors reported 
a classification accuracy of 88.62% with logistic regression, enhanced 
by dimensionality reduction through bWWPA, which selected the most 
influential features. Their study emphasized the benefits of data-driven 
quality assessment techniques in agriculture to optimize decision-
making and reduce reliance on subjective methods. The model proved 
valuable for improving apple quality monitoring and had potential 
applicability across various crops. 
 
Alfadhl Y. Khaled et al. (2023)[18] conducted a study using 
hyperspectral imaging and machine learning to predict 
physicochemical quality changes in apples infested by codling moths 
under different cold storage conditions. The authors used Gala apples 
and evaluated qualities such as firmness, pH, moisture content, and 
soluble solids content across storage temperatures of 0°C, 4°C, and 
10°C. Their models, developed with support vector regression (SVR) 
and partial least squares regression (PLSR), achieved high prediction 
accuracy (Rp up to 0.97 for pH and 0.95 for firmness). They also 
applied competitive adaptive reweighted sampling (CARS) to 
optimize wavelength selection, improving multispectral model 
performance. This work offered a non-destructive and efficient tool for 
monitoring pest-influenced quality degradation during storage. 
 
Bharti et al. (2022) [19]focused on predicting apple yield using 
artificial neural networks (ANN) based on morphological 
characteristics such as plant height, canopy spread, flowering 
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density, and fruit set. Their study employed principal component 
analysis (PCA) to select the most relevant variables, which were then 
used in ANN models with multiple hidden layers for nonlinear pattern 
recognition. They compared ANN to traditional linear regression 
approaches and demonstrated superior prediction performance and 
adaptability in complex data environments. Sensitivity analysis 
revealed the individual contribution of each morphological trait to yield. 
The findings highlighted the potential of ANN for more accurate yield 
forecasting and agricultural planning. 
 
E.I. Papageorgiou et al. (2018)[20] developed and evaluated both a 
fuzzy inference system (FIS) and an adaptive neuro-fuzzy inference 
system (ANFIS) to classify overall apple quality. They used expert- 
derived rules and four input parameters—fruit mass, skin color, 
soluble solids content, and flesh firmness—to categorize apples into 
five quality levels: excellent, good, medium, poor, and very poor. The 
FIS model achieved accuracy rates of over 96% in matching expert 
assessments across three consecutive years, outperforming ANFIS 
in conditions with limited data. Their study illustrated the strength of 
rule- based expert systems and fuzzy logic for agricultural quality 
grading, especially in uncertain or subjective decision-making 
contexts. 
 
Faizan Ahmad et al. (2021)[21] investigated postharvest apple quality 
under ambient storage conditions by developing computational models 
to predict the overall quality index (OQi). Their models incorporated 
physical and chemical attributes such as firmness, acidity, gloss, 
density, and Hunter color values (L, a, b), and were validated against 
sensory evaluation scores. They formulated a model (ML2) showing 
strong correlation between OQi and the combination of acidity, 
firmness, and color variables. Their approach provided a cost-
effective and non-destructive alternative for quality monitoring, aiding 
consumers and food processors in decision-making. The study 
emphasized practical tools for assessing stored apple quality in 
environments without cold storage infrastructure 
 
Luo et al. (2020)[22] highlighted the challenges in developing apple 
cultivars that combine durable disease resistance with elite fruit 
quality. Their study emphasized that most disease-resistant cultivars 
suffer from inferior fruit quality due to unimproved genetic 
backgrounds. They advocated for the use of modified backcrossing 
and genome-wide SNP arrays to efficiently eliminate undesirable DNA 
segments while preserving beneficial traits. The authors proposed 
pyramiding multiple resistance genes, both qualitative and 
quantitative, to enhance durability and minimize the risk of resistance 
breakdown. Their findings underscore the importance of integrating 
DNA-based tools into breeding programs to ensure both commercial 
viability and long-term disease resistance. 
 
Hu et al. (2024)[23] proposed a novel approach to evaluate the 
internal comprehensive quality of apples and predict their storage 
time using non-destructive spectroscopy-based models. The authors 
constructed a quality index via Pearson correlation and hierarchical 
analysis, then used partial least squares regression (PLSR) combined 
with kinetic modeling for quality prediction. Their calibration model 
achieved high predictive accuracy with R² of 0.9419 and RMSE of 
0.0023, while their storage time model had an R² of 0.8957. This 
integrated model addresses a key gap in evaluating multiple internal 
apple quality parameters simultaneously rather than in isolation. Their 
work represents a significant advancement in apple postharvest 
quality assessment using optical technologies. 
 
Larson et al. (2023) [24] explored the use of near-infrared 
spectroscopy (NIR) to quantify and predict carbohydrate profiles in 
apples throughout development. They used HPLC to validate sugar 

content across five time points in ‘Gala’ and ‘Red Delicious’, 
identifying sorbitol as dominant early and fructose as increasing 
toward harvest. The study built robust PLSR models to estimate 
carbohydrate composition with R² values as high as 0.96, supporting 
NIR as a rapid alternative to traditional chromatography. They also 
identified canopy positioning as a factor influencing carbohydrate 
distribution. Their results demonstrate NIR’s potential to support 
real-time, in-field monitoring of apple fruit physiology and quality. 
 
Jung et al. (2025)[25] assessed the performance of genomic and 
phenomic prediction models for apple breeding, emphasizing trait 
predictability in both controlled and practical breeding contexts. The 
study evaluated 137 prediction scenarios involving cross-validation 
strategies, training population composition, and genotyping 
technologies (SNP arrays vs. RADseq). They concluded that 
enlarging training sets with closely related germplasm enhances 
prediction accuracy, and that phenomic prediction using NIR 
spectroscopy is currently less effective than genomic prediction for 
apples. The authors recommended leave-one-family-out validation for 
realistic model deployment in breeding programs. Their findings guide 
the cost-effective application of genomic tools to accelerate apple 
improvement efforts. 
 
Grabska et al. (2023) [26]reviewed the applications of Vis/NIR and 
NIR spectroscopy for evaluating apple quality parameters, including 
firmness, SSC, acidity, and external traits. They emphasized the non- 
destructive, real-time capabilities of portable spectrometers and 
highlighted recent advances in chemometric methods such as PLSR, 
PCA, and ANN. The review detailed how spectral data fusion and 
model calibration enhance accuracy for industrial sorting, grading, and 
storage management. The authors also discussed the emerging role 
of handheld instruments and smartphone-integrated tools in 
democratizing quality monitoring. Their work provides a 
comprehensive framework for implementing optical spectroscopy in 
precision agriculture and apple supply chains 
 
Kusumiyati et al. (2021)[27] evaluated the potential of near-infrared 
spectroscopy (NIRS) to predict water and soluble solids content in 
‘Manalagi’ apples. The study used partial least squares regression 
(PLSR) and principal component regression (PCR) on spectra data 
collected between 702–1065 nm. The results indicated good 
predictive performance, with an R² of 0.85 and an RPD value of 2.69 
for soluble solids content, demonstrating the technique's feasibility. 
The use of orthogonal signal correction improved spectral quality, 
supporting model accuracy. Their findings support NIRS as a non-
destructive and effective alternative to conventional fruit quality 
assessment methods. 
 
McClure et al. (2018)[28] conducted a genome-wide association study 
(GWAS) and genomic prediction analysis across 172 apple cultivars 
to examine quality traits and apple scab resistance. Their results 
revealed several significant loci for fruit firmness, harvest date, and 
skin color, demonstrating the effectiveness of GWAS over traditional 
QTL mapping. They identified a novel ethylene response factor gene 
potentially responsible for firmness retention, differing from the 
traditionally implicated PG1 gene. Genomic prediction accuracy was 
high for most traits, suggesting suitability for genomic selection. The 
study provides a strong foundation for accelerating apple breeding 
through high-resolution genomic approaches. 
 
Minamikawa et al. (2024)[29] investigated the integration of 
genotypic data from different systems, namely SNP arrays and 
GRAS-Di sequencing, for genomic prediction (GP) and GWAS in 
apple. The study showed that combining datasets improved GP 
accuracy and the detection of significant loci for fruit traits such as 
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soluble solids and sweetness. Their models also incorporated 
inbreeding coefficients and found that this consideration improved GP 
for seven key traits. Significant overlaps between ROH islands and 
GWAS signals indicated historical selection by breeders. This study 
provides a practical framework for leveraging hybrid genotypic 
datasets in modern apple breeding. 
 
Cao et al. (2020) [30] developed a shelf life prediction model for 
‘Royal Gala’ apples using artificial neural networks (ANN) with input 
features like firmness, SSC, acidity, and storage temperature. They 
collected data over three years across four temperature settings 
and used sparse principal component analysis (SPCA) to reduce 
dimensionality. Their model achieved a high correlation (r = 0.997) 
between predicted and observed shelf life and minimized prediction 
error. The study emphasized the usefulness of SPCA-BP ANN as a 
universal model adaptable to varying storage conditions. These 
findings contribute to enhancing postharvest quality management and 
reducing apple storage losses. 
 
Jung et al. (2025)[31] explored the use of multi-environmental 
genomic prediction models in apples by integrating genomic, 
environmental (enviromic), and deep learning approaches. They 
applied these models to eleven phenotypic traits across five countries 
and demonstrated that incorporating genotype- by-environment 
interactions significantly improved predictive ability. Gaussian and 
deep kernel models outperformed standard G-BLUP, especially for 
traits with oligogenic architectures. Deep learning models provided 
additional gains for select traits but required dimensionality reduction. 
Their study confirms the viability of combining genomic and enviromic 
data to guide apple cultivar selection under diverse environmental 
conditions 
 
Mohit Kumar et al. (2022)[32] examined the challenges of detecting 
apple diseases and assessing sweetness using image processing 
integrated with human-computer interaction. They proposed a novel 
segmentation algorithm using Brightness Preserving Dynamic Fuzzy 
Histogram Equalisation (BPDFHE), which outperformed existing 
enhancement techniques. Their method achieved a 99.8% accuracy 
rate in detecting diseased apple leaves by segmenting them from 
complex backgrounds. The study emphasized the need for automated 
early disease detection to avoid crop losses and improve apple quality 
monitoring. Overall, their work contributes significantly to precision 
agriculture under Industry 4.0 frameworks. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sarah A. Kostick et al. (2023)[33] explored the effectiveness of 
genomewide selection (GWS) for predicting fruit quality traits in apples 
within a breeding program. Their research demonstrated moderate to 
high predictive abilities for traits like soluble solids content (SSC) and 
titratable acidity (TA), especially when large training datasets and high 
marker densities were used. They incorporated post diction analysis to 
validate selection outcomes and showed that GWS could rival 
traditional phenotypic selection in accuracy. The inclusion of fixed-
effect quantitative trait loci (QTLs) further enhanced prediction 
precision for specific traits like red overcolor. This study supports GWS 
as a reliable tool for breeding quality apples efficiently. 
 

Timea Ignat et al. (2014) [34] utilized VIS-NIR and SWIR 
spectroscopy to predict apple quality parameters like TSS, firmness, 
starch, and titratable acidity both at harvest and during cold storage. 
Using 600 apples from three cultivars, their study built calibration and 
validation models with high R² values for TSS and starch (0.86–0.91). 
The technology enabled non-destructive internal quality predictions 
across different storage periods, demonstrating the feasibility of using 
spectral imaging to forecast post-harvest apple conditions. Their 
findings suggested potential applications for automated grading and 
storage optimization systems in the apple industry. 
 

Wenping Peng et al. (2023) [35] developed a visible (Vis) 
spectroscopy system enhanced by a particle- swarm-optimized back-
propagation neural network (PSO-BPNN) for apple quality evaluation. 
Their hybrid model achieved 100% classification accuracy and a 
correlation coefficient of 0.998 for SSC prediction, outperforming 
traditional fructose meters. The study also integrated dynamic 
learning rate strategies and spectral pre-processing techniques like 
SG smoothing and PCA to refine predictions. This high-accuracy, low-
cost method shows strong potential for real-time, on-site quality 
assessment of apples during processing and distribution. It marks a 
significant step toward intelligent fruit sorting systems. 
 

Wenyan Zheng et al. (2020) [36] focused on predicting the degree of 
fruit cover color (DFC) in apples using a genomics-assisted model 
based on quantitative trait loci (QTLs). They identified ten QTLs related 
to skin coloration and developed KASP markers for genotype-based 
prediction. Their non-additive prediction model, which included the 
dominant MdMYB1 gene, achieved a Pearson correlation of 0.5690 
between predicted and observed phenotypes. Their research 
supports integrating molecular markers with predictive modeling to 
improve breeding for apple skin coloration. The model helps breeders 
target more visually appealing apples, which are crucial for 
marketability. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

DISCUSSION AND COMPRESSION 

# Author (Year) Objective Methodology Key Findings Context Accuracy 

1 Abdelhameed Ibrahim 
et al. (2024) 

Feature selection and 
classification of apple 
quality 

bWWPA + 
Logistic Regression 

Achieved 88.62% 
accuracy in apple quality 
classification; emphasized 
automated assessment 

Postharvest apple 
quality classification 

88.62% 

2 Alfadhl Y. Khaled et al. 
(2023) 

Predict physicochemical 
changes due to codling 
moths 

Hyperspectral imaging + 
SVR/PLSR + CARS 

Accurate prediction of 
firmness and pH during 
cold storage 

Infestation- related 
quality changes 

Up to 0.97 
(pH), 0.95 
(firmness) 

3 Bharti et al. (2022) Predict apple yield from 
morphology 

PCA + ANN ANN outperformed linear 
models; important for 
forecasting 

Yield prediction Not specified 

4 E.I. Papageorgiou et al. 
(2018) 

Classify apple quality 
levels 

FIS and ANFIS FIS achieved 
>96% accuracy over 
expert decisions 

Expert 
system 
grading 

>96% 

5 Faizan Ahmad et al. 
(2021) 

Predict overall quality 
index (OQi) 

Regression modeling 
+ sensory validation 

ML2 model had strong 
correlation with sensory 
scores 

Ambient storage 
monitoring 

Not specified 

6 Luo et al. (2020) Improve breeding for 
quality and disease 
resistance 

Backcrossing 
+ SNP arrays 

Advocated gene 
pyramiding and 
genome tools 

Genetic improvement Not applicable 

7 Hu et al. (2024) Predict quality and 
storage time 

Spectroscopy 
+ PLSR + 
kinetic modeling 

High RÂ² (0.9419); 
storage time model RÂ² 
= 0.8957 

Shelf-life and 
quality evaluation 

0.9419 / 
0.8957 
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EXTRACTED STATISTICS 
 
The frequency analysis of research objectives in apple quality 
prediction reveals that the most common focus areas are 
classification and SSC (soluble solids content), each appearing twice, 
reflecting a strong emphasis on categorizing apple quality and 
assessing sweetness. Other objectives appeared once, highlighting 
the diversity of specialized research directions. These include yield 
prediction, quality index estimation, breeding for disease resistance 
and fruit quality, and storage time modeling. Studies also addressed 
sugar profiling, genomic analysis, literature reviews, physicochemical 
assessments, GWAS, genotyping integration, shelf-life prediction, 
multi-environmental modeling, disease detection, GWS 
implementation, advanced spectroscopy applications, and color 
evaluation. This broad range of categories indicates a multidisciplinary 
approach aimed at enhancing apple quality monitoring through a 
combination of machine learning, imaging, genomic tools, and non-
destructive sensing technologies. As show infigure1 
 

 
 

Figure 1: frequency for Objective 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The frequency analysis of methodologies used in apple quality 
prediction research highlights that SNP arrays are the most commonly 
applied technique, appearing in three different studies, particularly in 
genomic selection, trait mapping, and genotyping integration. PLSR 
(Partial Least Squares Regression) and QTLs (Quantitative Trait Loci) 
follow with two mentions each, reflecting their central roles in both 
spectral data modeling and genetic trait prediction. Other 
methodologies such as b WWPA, GRAS-Di, RADseq, ANN, 
BPDFHE, FIS/ANFIS, deep learning, and spectroscopy appeared only 
once, illustrating the diversity of analytical and computational 
techniques employed across studies. This range of methods 
underscores the interdisciplinary nature of the field, combining 
statistical modeling, machine learning, and genomic technologies to 
enhance the precision, efficiency, and scalability of apple quality 
assessment as show in figure 2 
 

 
 

Figure 2: frequency for methodologies 
 
The frequency analysis of grouped key findings in apple quality 
prediction research shows that genomic modeling appeared most 
frequently, reflecting the growing use of genome wide selection, SNP 
arrays, and QTL-based approaches to improve trait predictability in 
breeding programs. Categories like high accuracy models, 

8 Larson et al. (2023) Quantify sugars over 
development 

NIR + PLSR 
+ HPLC 

Robust models for 
sugar content; identified 
canopy effects 

Carbohydrate 
profiling 

Up to 0.96 

9 Jung et al. (2025) Evaluate genomic vs 
phenomic prediction 

SNP arrays + RADseq + 
CV strategies 

Genomic models more 
accurate; leave-one-
family- out advised 

Breeding 
optimization 

Varies 

10 Grabska et al. (2023) Review NIR/Vis in apple 
quality 

Survey of 
chemometric tools 

Spectroscopy is 
effective and portable 

Industrial and 
precision farming 

Varies 

11 Kusumiyati et al. 
(2021) 

Predict water and SSC in 
Manalagi apples 

NIRS + PLSR/PCR RÂ² = 0.85 for 
SSC, improved by OSC 

Water/sugar 
content estimation 

0.85 

12 McClure et al. (2018) GWAS for quality and 
resistance 

GWAS + 
genomic prediction 

Identified loci for 
firmness, color; high 
accuracy 

Genomic trait 
mapping 

High 

13 Minamikawa et al. 
(2024) 

Integrate genotyping 
platforms 

SNP arrays + GRAS-Di + 
ROH analysis 

Hybrid datasets 
improved accuracy; 
found selection signals 

Genomic 
prediction 
framework 

Improved 

14 Cao et al. (2020) Predict shelf life using 
ANN 

SPCA + BP- ANN High r = 0.997; robust 
across temperatures 

Storage modeling 0.997 

15 Jung et al. (2025) Test multi- environmental 
prediction models 

Genomic + Enviromic + 
Deep Learning 

GxE improved 
accuracy; Gaussian 
kernel best 

Climate- resilient 
breeding 

Enhanced 

16 Mohit Kumar et al. 
(2022) 

Automate disease and 
sweetness detection 

Image Processing + 
BPDFHE 

99.8% accuracy on 
diseased leaf detection 

Image-based 
disease detection 

99.80% 

17 Sarah A. 
Kostick et al. (2023) 

Assess GWS for 
fruit traits 

GWS + QTLs + SNPs Moderate to high 
predictive abilities 

Apple trait 
breeding 

0.35â€“0.64 

18 Timea Ignat et al. 
(2014) 

Predict storage quality 
with spectroscopy 

VIS-NIR, SWIR + 
calibration 

TSS/Starch RÂ² = 
0.86â€“0.91 

Storage 
forecasting 

0.86â€“0.91 

19 Wenping Peng et al. 
(2023) 

Spectroscopy + 
ML for SSC prediction 

Vis + PSO- BPNN 100% classification, 
 r = 0.998 

Real-time grading 0.998 

20 Wenyan Zheng et al. 
(2020) 

Predict apple cover color QTLs + KASP + 
prediction model 

Pearson r = 0.5690 for 
color degree 

Color trait 
breeding 

0.569 
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classification performance, and predictive modeling also featured 
prominently, highlighting the effectiveness of machine learning and 
deep learning models such as ANN, FIS, and PSO- BPNN in 
achieving over 95% accuracy in tasks like defect detection and fruit 
grading. Additionally, spectroscopy techniques and quality trait 
assessments—particularly related to soluble solids content (SSC), 
total soluble solids (TSS), and firmness—were common, often 
achieving strong correlations (R² > 0.85) in non-destructive 
evaluations. Other important yet less frequent themes included storage 
modeling, disease detection, color prediction, environmental factor 
modeling (GxE interactions, temperature effects), and sensory 
correlation, all contributing to the development of precise, scalable, 
and field- applicable apple quality prediction systems. As show in 
figure 3. 
 

 
 

Figure 3: frequency for key findings 

 
RECOMMENDATIONS 
 
1. Integrate Multi-Modal Approaches: Future systems should 

combine spectral, imaging, and genomic data to enhance the 
robustness and accuracy of apple quality prediction, capturing 
both external and internal attributes comprehensively. 

2. Develop Lightweight and Field-Deployable Tools: There is a 
pressing need to design portable, low-cost devices using 
VIS/NIR sensors, possibly integrated with smartphones or IoT 
platforms, to enable real-time, in-field quality assessment for 
farmers and distributors. 

3. Adopt Advanced AI and Deep Learning Models: Enhanced 
deep learning architectures, such as convolutional neural 
networks (CNNs) combined with optimization algorithms (e.g., 
PSO, GA), should be applied to automate classification and 
regression tasks for apple traits with minimal human 
intervention. 

4. Expand Genomic Prediction in Breeding Programs: 
Breeders are encouraged to incorporate genome wide selection 
(GWS) and QTL-based prediction models into routine cultivar 
development processes to improve quality-related trait 
predictability, especially for complex traits like sweetness and 
firmness. 

5. Standardize Data and Benchmarking Protocols: The apple 
research community should establish open datasets, 
standardized evaluation metrics, and benchmarking procedures 
to ensure comparability and replicability of machine learning 
models across different regions and apple varieties. 

6. Model Environmental and Temporal Variability: Prediction 
models must account for environmental factors (e.g., 
temperature, humidity, soil) and temporal changes (e.g., 
ripening, storage duration) to increase reliability under practical 
agricultural conditions. 

7. Encourage Cross-Disciplinary Collaboration: Collaboration 
among horticulturists, data scientists, breeders, and engineers is 
essential to design scalable solutions that align with the real 
needs of the apple industry, from farm to shelf. 

8. Promote User-Friendly Interfaces and Decision Support 
Systems: Quality prediction tools should be equipped with 
intuitive interfaces and integrated into farm management systems 
to assist growers in making timely harvesting, storage, and 
marketing decisions. 

 
CONCLUSIONS 
 
This review highlights the significant progress made in apple quality 
prediction through the integration of advanced technologies such as 
spectroscopy, machine learning, deep learning, and genomic 
modeling. By replacing traditional, labor-intensive evaluation methods 
with automated and non-destructive approaches, researchers have 
achieved high levels of accuracy in predicting key quality attributes 
like sweetness, firmness, acidity, and color. The use of convolutional 
neural networks (CNNs), partial least squares regression (PLSR), 
and genomic tools like SNP arrays and QTL mapping has 
demonstrated strong potential for improving real-time monitoring, 
postharvest management, and breeding efficiency. The literature 
confirms that combining spectral and genomic data enhances trait 
prediction, while optimization algorithms further refine model 
accuracy. Despite these advances, challenges remain in 
standardizing methodologies, addressing environmental variability, 
and making these systems widely accessible. Therefore, future 
research should focus on developing lightweight, portable tools, 
creating shared datasets, and promoting interdisciplinary collaboration 
to translate laboratory innovations into practical agricultural solutions. 
Ultimately, the convergence of artificial intelligence, optical sensing, 
and genomics paves the way for a smart, scalable, and sustainable 
system for apple quality assessment, supporting global food quality 
and agricultural innovation. 
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