
International Journal of Innovation Scientific Research and Review

Vol. 07, Issue, 05, pp.8432-8447, May 2025

Available online at http://www.journalijisr.com

SJIF Impact Factor 2025: 7.913

Research Article

ISSN: 2582-6131

THE EVOLUTION OF RELATIONAL DATABASES: FROM TRADITIONAL MODELS TO CLOUD-
BASED AND DISTRIBUTED SYSTEMS

*Chreesk Sabah M. Ali and Dr. Hajar Maseeh Yasin

Akre University for Applied Sciences, Technical College of Informatics, Department of Information Technology, Duhok, Kurdistan Region, Iraq.

Received 08th March 2025; Accepted 09th April 2025; Published online 20th May 2025

ABSTRACT

This study examines the progression of relational databases from conventional, centralized RDBMS frameworks to contemporary distributed and cloud-based
systems. It describes basic concepts such as indexing, transaction management, and organized schemas, while also highlighting drawbacks that have prompted
the development of more adaptable data models. The study examines the transition from traditional SQL databases to newer paradigms, such as NoSQL and
NewSQL, highlighting the significance of distributed systems and scalable cloud migration. Additionally, the study examines new developments that promise to
improve real-time processing and data management flexibility, such as server less computing and AI integration. Overall, it offers a succinct but thorough
summary of past developments and potential paths for database technology, providing practitioners and academics with insightful information to maximise
contemporary data processing and storage options.

Keywords: Evolution of Relational Databases: Advancing from Traditional SQL to Scalable, Cloud-Driven, NoSQL & Distributed Data Management Systems.

INTRODUCTION

This paper examines the significant evolution of the relational
database, exploring the various challenges it has presented
throughout its history, as well as the recent developments that have
emerged in the ever-changing landscape of database management
systems. To set the stage, it is essential first to introduce the most
fundamental principles that underpin relational databases. A relational
database management system, commonly referred to as an RDBMS,
is a sophisticated computer system equipped with applications that
abstract, organize, and maintain data, all while invoking transactions
in a well-defined and structured manner. Conceptually, users interact
with this complex system through a query language, a declarative,
question-oriented language designed for ease of use and efficiency.
An RDBMS features a schema that precisely defines the structure of
the records, or rows, to be stored, alongside the specific types of
information associated with each entity or table. In general, a
relational database will also generate a variety of indices. These
indices are, in essence, search structures that serve to accelerate
frequent queries and ensure that checkpoints do not prolong the
retrieval process, resulting in a more streamlined and efficient user
experience [1]. The system promises full transaction mapping, which
is critical for maintaining data integrity. When performing a
transaction, a series of changes is applied across multiple databases
based on a logical view of the data. Physically, a transaction is
requested from a primitive operation to be atomically addressed,
analogous to ensuring that either all changes in a transaction are
executed successfully and permanently stored on the disk, or none
are if the transaction fails. The core of the RDBMS comprises the
module responsible for managing transactions and scheduling these
operations, in addition to controlling user queries to facilitate
concurrent execution [2]. This crucial component is known as the
transaction manager, which ensures the smooth operation of the
system. Traditionally, records are stored using keys, with each record

*Corresponding Author: Chreesk Sabah M. Ali,
Akre University for Applied Sciences, Technical College of Informatics,
Department of Information Technology, Duhok, Kurdistan Region, Iraq.

possessing scheme-compatible data types that adhere to the
structured format of the RDBMS. However, there has been a growing
interest in modern systems that prioritize essential transactional
capabilities while not adhering strictly to the conventional RDBMS-
style synchronization methods. Instead, these newer models operate
on a data structure that is significantly more flexible than the rigid
record/attribute storage characteristic of the traditional relational
model. For the time being, though, the focus remains on the
traditional RDBMS framework. As the project culminates, it offers a
brief introduction to the realm of modern cloud-based and distributed
database systems. These contemporary innovations represent the
motivation behind addressing many of the longstanding issues
associated with traditional RDBMS that are currently being
highlighted in discussions within the field.[3]

HISTORICAL BACKGROUND

Automatic data migration to the cloud from relational databases is
vital. Organizations often begin with private database servers and
require a combination of database and application configurations to
support growth. Many establish regional locations for broader
coverage. RDBMS operates on the DB server for data operations
using 2-phase committed transactions. Since access to data objects
is unpredictable, the query processing path is also on the DB server
to reduce performance issues. Initially, indexing is provided for data
objects. Kernel-space operations are theoretically unlimited, so in-
memory caching is utilized. Without a public API, many RDBMS
optimizations are vendor-specific.[4]

The automatic data migration to cloud database architecture results in
two sets of quadruples for each table: one for the number of hash
indexes and one for the number of indexes on time, label, and
primary key mapping fields. For consortia involving inter-commodities,
the ability to decide under which table each object is located in the
information retrieval path exists. A flat index file has a fixed schema
with a list of keyed records, including each interpolation and
configuration generating 4 4-tuple. Because the cloud database
cluster may be periodically expanded and shrunk, a feature is

included that exports the RDBMS field's unique hashes of the data
and non-intersecting divides the object hash space. Thus, the cloud
database cluster implementation can deduce which quadruples
describe object aggregation and de-allocation automatically [5]. Upon
receiving a command flow that requires modifications to the target
database configuration, the client-side app parses the command and,
probabilistically, checks the corresponding indexes. At some point,
applications exceed a few hundred objects, each in the hundreds of
Gigabytes, and maintaining appropriate statistics without a very large
storage is challenging. To overcome this problem, a subset of base
objects with manually configured relevant indexes is designated. The
preserved hash of the object's time field is calculated, and the output
hash index, resulting in the cloud location, is derived. For the newly
added hashing indexes during the cloud migration, as the app ages, it
will attempt new hashes for an extended period until an appropriate
hash space is established. [6]

TRADITIONAL RELATIONAL DATABASE MODELS

Each of the proposed frameworks relies on the design of powerful,
flexible, and scalable methods for representing a wide range of Ratio
Temporal Relations that will be encountered in practice. In this paper,
two methods are described: the initiation of Duration Calculus-based
algebra and the compilation of Constraint Models in a Constraint
Logic Programming language. The aim is to establish a framework for
representing and reasoning about rich sets of constraints involving
future instances and time periods, as well as temporal relations. As
technology continues to grow at an exponential rate, databases must
keep pace, continually redesign, and expand. A decade earlier, the
keyword used was centralized database. Currently, the term that is
gaining significant momentum in the database sector is cloud-based
databases. The cloud-based database enables the database owner
to access advanced development tools, fast data retrieval, and global
data sharing. Traditionally, databases are stored in a traditional
record system previously known as a flat file system. Later, with the
revolutionary growth in data requirements through databases,
relational database modeling was introduced as a response. A
framework is designed, and a formal description is provided for the
temporal requirements problem in relational data modeling. Since the
advent of the traditional record system, to address flat file issues and
enhance data retrieval, a Relational Data Model was introduced. This
work is based on the relational framework of RDM. [7]

Key Features of Traditional Models

Before the Big Data era, traditional relational database management
systems (RDBMSs), such as MySQL and SQL Server, were widely
used for data storage due to their transactional capabilities. Premium
options included Oracle, IBM DB2, and PostgreSQL. As organizations
encountered vast and diverse data volumes, RDBMS became less
effective, leading to a shift toward more scalable models. Initially, Big
Data focused on batch processing and data warehouses. The
Hadoop community introduced HDFS and MapReduce as low-cost
storage solutions, but faced challenges such as complexity and a lack
of real-time query processing. Consequently, enterprises began to
move away from them. To address these limitations, Apache projects
such as HBase, Sqoop, Flume, Hive, Oozie, and Spark emerged;
however, overcoming these challenges remained a significant
challenge. Software vendors, such as Microsoft and Oracle,
responded by launching APIs and proprietary solutions, yet they still
encountered constraints. Oracle and IBM also addressed the open-
source threat with cloud-based data processing systems, though
issues persisted. Oracle faced challenges with column family
solutions and secondary index support for range queries, while
performance in cross-data center replication added more complexity.

Systems often experienced backlogs during scaling, requiring data
from both old and new sources, complicating performance. Ultimately,
while robust, object storage lacked the write restrictions typically
found in traditional file systems. [8][9]

Limitations of Traditional Models

The end of the 20th century sees us, in an increasingly frequent
manner, new requirements and scenarios emerge that no longer fit
properly within this relational model. Reasons for this are manifold.
For once, the considerable penetration of the Internet and the
widespread sharing and exchange of data that results. The ever-
growing importance of this network also arises in connection with the
analysis and management of vast amounts of data and activity, which
must be stored and maintained. Another motivation is that, in this
context, the scenarios change, and a new well-established tendency
towards distribution emerges [10]. How to store and deal with the
necessary vast amounts of data on the network within this
environment without neglecting desirable scalability criteria.
Additionally, properly following relational submission and distribution
simultaneously makes a shift to other models or premises an
attractive option. From here – in the following sections – there begins,
then, after a short introduction and main topic, to detail and work on a
more affine model, which gives attention to flat relations, intended to
include a system to “emulate” the vision of today in both query time
and space. [11]

THE RISE OF SQL

Over the past 20 years, exploring the history of databases has been
akin to engaging with a well-loved aristocratic family. Initially, it feels
like being an entertained guest or an eager student. As time passes,
it evolves into a familiar conversation with an old friend, marked by
humor, debate, and captivating stories. Although there is concern
about political correctness, discussions can stray into uncomfortable
territory, reflecting broader societal issues. This document aims to
recount the history of databases without implying any structural
equivalence. As noted by Breslauer, observing databases provides
valuable insights. Ultimately, the experience reveals that databases
represent both an “object of desire” and a rich source for historical
understanding. [12]

Developers began to diversify their database spend on newer rivals to
the tried-and-tested SQL Database. NoSQL databases emerged as
an alternative to traditional relational systems, and the rise of big data
and the cloud necessitated a different approach. These engines
emerged in the mid-2000s, initially supporting specific use cases,
such as search or column storage. By 2024, they had evolved to
handle high-velocity, high-ingestion workloads and are widely
considered faster and more flexible. The responders also said that
SQL models had already had a good life, and now they needed
something more straightforward. One of these solutions was the
adoption of the NoSQL Data store. This more flexible and fast
methodology allowed for modeling entities and properties without the
need for data normalization, and for easily creating new attributes or
data, while handling the high-performance requirements. [13]

SQL Language Overview

This chapter covers structured data processing with SQL, the
generalizability of database extensions for training and inference of
neural networks, and common strategies for embedding table data in
neural network architectures. Relational database management
systems are reliable, mature data stores. Information in the database
can be retrieved and modified using SQL. With the SQL/MDM

International Journal of Innovation Scientific Research and Review, Vol. 07, Issue 05, pp.8432-8447 May 2025 8433

approach, continuous data is retrieved from the database for training
and querying, which is the typical machine learning use case.
Additionally, database systems are efficient for expres
queries or machine learning algorithms on graphs by transforming the
data offline into their relational representation.
Structured Query Language (SQL) was introduced in 1974 as an
English-like query language and has been an ANSI/ISO standa
since 1986. Initially, there was no “language spec,” prompting
database vendors to create their own dialects. Standardization began
in the late 1980s, resulting in the first official standard in 1986,
followed by a comprehensive rewrite in 1989 to addre
The third standard, SQL-92, was published in 1992 and marked the
first normalization, removing redundant features. SQL
9075-1:1992) is included in DB2 and MySQL implementations, with
DB2 being IBM’s most advanced database, altho
partial support for SQL-92. Major commercial relational database
management systems support features like transactions and
advanced SQL queries. MySQL, an open-source DBMS, supports
advanced SQL queries but lacks transaction-related fe
MySQL server is started with “mysqld-nt -O my.cnf,” while DB2 uses
“db2start.” [14]

Impact of SQL on Database Management

The SQL platform emerged in the mid-1970s as a response to
existing database management systems, making it easier for us
access and interact with those systems. Structured Query Language
(SQL) is the fundamental language for storing and managing data in
relational databases. This idea was powerful because now people
who wanted to use databases didn’t have to be progra
could write SQL expressions to retrieve data. SQL enabled people
who were focusing on business questions and not code to use the
system. However, for a long time, a divide has existed in database
management. There is a group of SQL users, those
expressions and submit them to the database server for execution.
There is another group, consisting of more experienced industrial
database administrators (DBAs) or professionally trained computer
scientists, who understand what is happening inside the database,
including storage, query execution, the query planner, and so on. The
latter group is responsible for ensuring that databases remain
operational and writes software used to manage databases. To be a
good database programmer who writes high
applications, one typically needs to understand both sides. Too often,
a divide exists between these groups for various reasons.

ADVANCEMENTS IN RELATIONAL DATABASE
TECHNOLOGY

Database management systems aim to enhance data pr
performance. Various types include hierarchical, network, and
relational database management systems (RDBMSs), which are
preferred for storing structured data. RDBMSs utilize SQL for efficient
data management and operations. Organizations also uti
warehousing techniques for large datasets. However, locks in
RDBMSs ensure transaction isolation, which can slow down
performance as transaction volume increases. NewSQL offers a
centralized lock manager, which can lead to bottlenecks. NewQ, a
hybrid database system, combines the advantages of RDBMS with
those of data warehousing for enhanced transaction monitoring. With
the growth of the Internet, data scale, user numbers, and server
capacity have surged, making databases essential for maintainin
data integrity and processing. RDBMS remains the leading choice for
structured data due to its effectiveness; however, traditional RDBMSs'
locking mechanisms introduce overheads, such as deadlocks, which
are crucial for sharing data amidst numerous concu

International Journal of Innovation Scientific Research and Review

approach, continuous data is retrieved from the database for training
and querying, which is the typical machine learning use case.
Additionally, database systems are efficient for expressive relational
queries or machine learning algorithms on graphs by transforming the

Structured Query Language (SQL) was introduced in 1974 as an
like query language and has been an ANSI/ISO standard

since 1986. Initially, there was no “language spec,” prompting
database vendors to create their own dialects. Standardization began
in the late 1980s, resulting in the first official standard in 1986,
followed by a comprehensive rewrite in 1989 to address ambiguities.

92, was published in 1992 and marked the
first normalization, removing redundant features. SQL-92 (ISO/IEC

1:1992) is included in DB2 and MySQL implementations, with
DB2 being IBM’s most advanced database, although it only provides

92. Major commercial relational database
management systems support features like transactions and

source DBMS, supports
related features. The

O my.cnf,” while DB2 uses

1970s as a response to
existing database management systems, making it easier for users to
access and interact with those systems. Structured Query Language
(SQL) is the fundamental language for storing and managing data in
relational databases. This idea was powerful because now people
who wanted to use databases didn’t have to be programmers; they
could write SQL expressions to retrieve data. SQL enabled people
who were focusing on business questions and not code to use the
system. However, for a long time, a divide has existed in database
management. There is a group of SQL users, those who write SQL
expressions and submit them to the database server for execution.
There is another group, consisting of more experienced industrial
database administrators (DBAs) or professionally trained computer

g inside the database,
including storage, query execution, the query planner, and so on. The
latter group is responsible for ensuring that databases remain
operational and writes software used to manage databases. To be a

s high-performance
applications, one typically needs to understand both sides. Too often,
a divide exists between these groups for various reasons. [15][16]

ADVANCEMENTS IN RELATIONAL DATABASE

Database management systems aim to enhance data processing
performance. Various types include hierarchical, network, and
relational database management systems (RDBMSs), which are
preferred for storing structured data. RDBMSs utilize SQL for efficient
data management and operations. Organizations also utilize data
warehousing techniques for large datasets. However, locks in
RDBMSs ensure transaction isolation, which can slow down
performance as transaction volume increases. NewSQL offers a
centralized lock manager, which can lead to bottlenecks. NewQ, a

brid database system, combines the advantages of RDBMS with
those of data warehousing for enhanced transaction monitoring. With
the growth of the Internet, data scale, user numbers, and server
capacity have surged, making databases essential for maintaining
data integrity and processing. RDBMS remains the leading choice for
structured data due to its effectiveness; however, traditional RDBMSs'
locking mechanisms introduce overheads, such as deadlocks, which
are crucial for sharing data amidst numerous concurrent queries.

Alternatives have been proposed to improve scalability and minimize
deadlocks without relying on locks.

Normalization and Data Integrity

A relational database management system connects to databases
and executes SQL queries to manipu
used to retrieve or update information within the database, with a
significant focus on data settings and attributes. Data is organized in
relational tables, and algorithms materialize query results in two
dimensional formats, even for multi
operator set includes various relational database system operators,
while additional metadata, physical constraints on tables, and data
access overheads are not part of the same systems. Modern data is
typically stored in relational databases, which facilitate efficient
complex queries. Just as homes can use gas or electricity for heating,
databases can also utilize various formats to store diverse data types.
However, fixed schemas enforce a standard structure whi
formats often lack this capability. A golden record represents an
idealized aggregation of information from multiple sources, raising the
question of how to map these data sources to the golden record
automatically. [18]

Figure 1: The figure representation about Normalization and Data

Integrity.

Transaction Management

The complexity of current-day setups is becoming a burden for
traditional recovery and concurrency control algorithms. A strategy is
suggested to help keep pace with the prol
hardware and workloads: unbundling these services from the
underlying data management and making them available as cloud
services. In this way, recovery and concurrency control can be
provided outside normal DBMSs
layers of the classical architecture: storage, query processing,
transaction management, and interface.

c Research and Review, Vol. 07, Issue 05, pp.8432-8447 May 2025 843

Alternatives have been proposed to improve scalability and minimize
deadlocks without relying on locks. [17]

Normalization and Data Integrity

A relational database management system connects to databases
and executes SQL queries to manipulate data. SQL statements are
used to retrieve or update information within the database, with a
significant focus on data settings and attributes. Data is organized in
relational tables, and algorithms materialize query results in two-

even for multi-way joins. The algorithm’s
operator set includes various relational database system operators,
while additional metadata, physical constraints on tables, and data
access overheads are not part of the same systems. Modern data is

tored in relational databases, which facilitate efficient
complex queries. Just as homes can use gas or electricity for heating,
databases can also utilize various formats to store diverse data types.
However, fixed schemas enforce a standard structure while flexible
formats often lack this capability. A golden record represents an
idealized aggregation of information from multiple sources, raising the
question of how to map these data sources to the golden record

epresentation about Normalization and Data
Integrity.

day setups is becoming a burden for
traditional recovery and concurrency control algorithms. A strategy is
suggested to help keep pace with the proliferation of diverse
hardware and workloads: unbundling these services from the
underlying data management and making them available as cloud
services. In this way, recovery and concurrency control can be
provided outside normal DBMSs—a separation spanning all four
layers of the classical architecture: storage, query processing,
transaction management, and interface. [19]

5 8434

Figure 2: The figure representation about Transaction
Management.

The emerging paradigm of cloud computing offers a robust platform
for running various services, including those that are long-lived.
Regarding transaction management, a radical, workload-adaptive
approach is proposed. There are no hard-wired recovery and locking
protocols in place. Each TC or DC service instance starts from
scratch with a fresh log segment. The log is the only fixed point of
recovery. Transaction semantics are deduced from log cleanliness. In
current deployments, a DC should submit only Commit or Depend
commands. The coordinate node acts as a journaling file system for
those commands.

Concurrency management is still in the interface layer of a DC.
Further evolution may move that support either higher up to a
concurrency cloud outside the DC service proper, or lower down into
the underlying TCs. Concurrency control per se may be handled in
the cloud. The client API is then modelled with one of four degrees of
express oblivious concurrency control. At the extreme, the database
merely promises to attempt to fulfill read and write requests unless
they require unobtainable resources. The ensuing speculation on the
need for corresponding decision support among clients is now
believed unnecessary. [20]

INTRODUCTION TO CLOUD-BASED DATABASES

Traditionally, database management systems have been used as
back-end storage systems for web application servers. The
conventional model involves installing the web server, middleware,
and database server in a single location. The emergence of efficient
web distribution tools and the increased cost efficiency and ease of
availability of cloud resources have led companies to consider
creating tools and storage within the cloud, accessible over the
network. Cloud-based databases have been developed to facilitate
the storage and retrieval of application data over a network. These
databases are provided as services and account for the transactions
and the storage capacity they have. Although cloud-based databases
are increasingly mainstream, they have not been widely studied in
conjunction with other cloud components and network infrastructure
from several perspectives. This is because cloud computing, in
general, and database systems, in particular, are multifaceted
research domains.

The rise of cloud technology has led to the development of various
distributed and NoSQL databases that address the limitations of
traditional systems. These databases enhance throughput and

uptime, offering network accessibility and scalability to meet high
demand. They are designed for fault tolerance, ensuring continuity
even if certain parts fail due to their high-availability architecture.
Distributed NoSQL document-based databases are prevalent in cloud
environments. However, the use of central cloud storage limits hybrid
cloud applications, as remote caches access data more slowly than
local databases. Data is replicated across various data centers in one
or more clouds, with central databases serving as backends for
distributed cloud systems. Popular NoSQL databases partition data
into buckets on separate nodes. [21]

Definition and Characteristics

This section examines the development and functioning of DBMSs.
For years, the database community has focused on creating scalable
DBMSs. The approach to building a 1000-node DBMS is now well-
defined. It highlights two prominent database service providers:
Google Big table and Apache HBase. Database research aims to
create a DBMS that is easier to deploy, maintain, and extend than
existing systems. A key technology for scalable systems is the
distributed hash table, with Ballista serving as a simple example on a
small cluster. It supports two scalable systems: one focuses on
robust, predictable performance DBMS clusters, while the other
explores multi-data center systems, leading to the development of
Cloud Span and Spanner. The discussion concludes with open
challenges in the DBMS domain. [22]

There is a wide variety of database systems available in the cloud,
each with its own distinct emphasis and target applications.
Researchers struggle with the question of what characterizes the
"database-ness" of a system. A multidimensional classification of the
cloud database space is proposed, identifying ten dimensions that
vary widely among the systems investigated. These dimensions
include "strong" multi-row transactions, dynamic schema updates,
and non-deterministic query evaluation. The survey assesses the
premises, technical details, and impact of the most representative
space systems in these dimensions. Some preliminary findings of the
research are presented. [23]

Advantages of Cloud Solutions

This section discusses the evolution of traditional relational databases
to the current cloud-based and distributed database systems. The
basic concepts of various new SQL and NoSQL systems are also
reviewed. Traditional databases have been relational databases for
decades. The basic building block of these systems is a table in
which data is stored in an ACID-compliant way. In this model, each
table has a schema that defines the fields and their types. The
schema must be defined in advance so existing fields cannot be
easily modified or deleted. There are well-established relational
database management systems. The language used to query
relational databases is SQL, which is based on which SQL database
processing engines are built. SQL is known for its set-based
interface, where a single SQL statement can operate on hundreds,
thousands, or even millions of records. [24]

Databases moved to the Web and web applications. Web-interpreted
programming languages can be used to generate HTML. To add
dynamics to these generated pages, interaction with the database is
necessary. In the PHP world, the most famous database engines are
MySQL and PostgreSQL. These engines did not have built-in
database drivers, but instead, DB interactivity was achieved through a
myriad of API functions. In the ASP world, access to the database
was through ADO. Java introduced some frameworks that abstract
the resource allocation and management from the programmer.

International Journal of Innovation Scientific Research and Review, Vol. 07, Issue 05, pp.8432-8447 May 2025 8435

Agility? To avoid redundancy, ensure better control of updates, and
design the system for better performance.

With the advent of cloud computing, the application of database
concepts has undergone significant changes. Cloud databases are
designed for thin clients that send their queries to powerful cloud
servers. How do cloud databases work? Instead of being stored in flat
text files, the data is stored in relational database servers functioning
in a private cloud. Each database server collects information from
multiple tables and executes complex SQL queries. Since the
database format is hidden, it cannot be queried by a generic
database engine. A cloud server can communicate with many
database servers and with other cloud services. A reply is formatted,
containing the requested data. With the plurality of service providers,
there is no specific formatting convention. The data may need to go
through various language parsers. This format is complex and difficult
to parse. [25]

DISTRIBUTED DATABASE SYSTEMS

Over the last few decades, the relational database has become the
dominant type of database used by many companies, institutions,
and, more recently, personal users who generate vast volumes of
data through their activities, including e-commerce, internet usage,
and video gaming. However, the relational model has been evolving,
playing catch-up with the evolving relational database systems. Then,
in the next section, we will dive deeper into the exploration of this
evolution. However, this evolution compelled some companies to
select new database engines that diverged from the traditional
relational database model. [26]

The traditional database model was initially designed for centralized
architectures; however, the growing amount of data that companies
must store has led to the development of quantitatively superior
business rules, algorithms, and software applications that the
traditional database model cannot handle. In this scenario, relational
databases, which support queries written in the SQL language, began
to reach computational and storage limits as data volumes grew. This
led to an investigation of novel database models capable of efficient
parallel and/or distributed processing, designed to scale out with new
computing paradigms.

In a distributed database system (DDBS), a database is stored across
geographically distributed sites, and each site is managed by a local
Database Management System (DBMS) that can access and update
the data in its own site as well as the data located at other sites. The
DB of a DDBS can provide the illusion to a user that the data stored is
all centralized. Furthermore, a DDBS must provide transparency for
data distribution or replication, fragmentation, and remoting. [27]

Concepts and Architectures

Database system architectures are undergoing significant changes as
algorithms and data integrate with programming languages,
transforming each DBMS into a web service. Customers can access
stored procedures and manipulate data online. Strong servers run
User-Defined Functions (UDFs) as compiled code due to the I/O-
bound nature of HTTP. DBMSs function as object containers, housing
collections of objects and tables, where each object comprises
various components with distinct schemas and methods. These
containers are divided into schemas that allow inter-object
referencing via fully qualified names. Transaction processing and
workflow applications are based on queues, with asynchronous flows
defined by chains of stored procedures interacting with queues.
DBMSs have incorporated queue management into their architecture

for over a decade, with OS-level support in Windows NT and UNIX,
and have introduced declarative queues that extend T-SQL. Most
DBMSs now include integrated support for data cubes and online
analytic processing, along with frameworks for data mining and
machine learning. Data mining adjusts model parameters to fit data.
Offline data mining separates model training and production queries,
enabling runtime queries against specialized databases and models,
with the scoring operation supported by the DBMS.[28]

Challenges in Distributed Systems

The last decade of the 20th century witnessed the rise of object-
oriented and object-relational database management systems, which
merged relational DBMSs with SQL access and complex data types.
This evolution led to extensive analysis of relational database
technology, exploring its history to recent developments in multi-strata
and heterogeneous query languages. Trends in distributed and
federated data management were also examined, highlighting the
challenges posed by scalable system solutions in modern information
systems. New database applications often outperformed prior storage
technologies and DBMS products, benefiting from advancements
within existing hardware-software constraints. Research shifted
toward intelligent databases, particularly deductive and federated
systems. [29]

The primary conceptual schema design policy for very large
databases was initially established through partitioning and
replication, and has since been refined by newer methodological or
heuristic contributions, which currently dominate use and acceptance.
Some other claimed principles now seem dated. The early
manifestations of some important future research and application
trends have been overlooked, including the fact that extensively
studied optimization problems are NP-complete for large databases
and non-trivial queries, but not for the most uncomplicated practical
cases. The same is true for the latter-day concerns about the
technology lock-in effects.

COMPARATIVE ANALYSIS OF DATABASE MODELS

Databases have a significant role in the development of computer
technologies. The first databases were developed in the 1960s,
utilizing hierarchical and network data organization models. This
model consists of n-to-n relationships for data that is awkward for
many structures and therefore cannot be managed effectively.
Furthermore, hierarchical and network data organization models
should consider the relationships between the tables. Making a
change in one table can create a chain of changes in other tables that
have relationships with the altered table. [30]

A researcher working at IBM developed a new system in which the
data was kept in tables. He introduced the inner join and outer join,
which relate rows in two or more tables. SQL is developed for
DBMSs, provides the possibility of working with multiple tables
together, and cleaning the data to be ready for analysis. A relational
DBMS consists of a set of tables, each with a unique name. The
following queries are used for making operations on a database: (1)
Inserting data, (2) Deleting data, (3) Updating the data, and (4)
Getting data from the database using queries. Later in 2000, JSON-
based DBMSs, such as MongoDB, were introduced as an alternative
to relational DBMSs. With the advent of cloud and distributed
systems, this model is preferred for use in conjunction with NoSQL
DBMS. With the increasing volume and complexity of data, these
systems manage data efficiently and effectively. [31]

International Journal of Innovation Scientific Research and Review, Vol. 07, Issue 05, pp.8432-8447 May 2025 8436

Traditional vs. Cloud-Based

Relational Database Management Systems (RDBMS) have long been
the standard for data management. Still, the Internet's explosion of
data has rendered them inadequate for the speed and volume
required by modern web applications. This has driven many
enterprises toward NoSQL databases. In RDBMS, queries and
storage are processed by a single server, which creates
inefficiencies, particularly when scaling to meet high data request
ratios. After the dot-com bubble, server availability became a
constraint, forcing companies to invest heavily in larger machines to
function as DB Servers, often leading to high licensing costs as CPU
counts increased. Scaling out by adding multiple machines has
become more common in cloud environments, offering a more
economical solution through pay-per-use pricing and reduced
hardware costs. Smaller machines can boost computing power and
resilience. Companies like Google and Amazon utilize key-value pair
systems for their scalable infrastructure, with the “Web Scale
Principle” advocating for distribution and rapid recovery from failures.
However, these systems often fall short in transaction guarantees,
which can be critical. As data demands evolve with the growth of the
Internet, suitable data models have become essential, reflecting the
importance of specialized roles, as seen in sports. As RDBs became
dominant through Codd's relational model, their limitations in handling
large-scale, high-concurrency environments have prompted a move
to NoSQL solutions. One challenge in this transition is the reliance on
SQL in existing RDBs, coupled with resistance from vendors
regarding data exports. While transferring data between storage
types can be straightforward, migration may require API updates and
modifications to outdated data models to accommodate new storage
solutions. [32]

Cloud-Based vs. Distributed

Relational database management systems have been the standard
for data persistence and management. However, a plethora of
NoSQL and NewSQL systems have emerged over the past decade,
offering interesting persistence options for various types of domains.
This new landscape comprises a family of data stores and access
paradigms that differ from the traditional relational model. NoSQL
databases are recognized for their performance, flexibility, and
scalability advantages in various use cases, suggesting that these
properties are crucial for the needs of modern applications. NewSQL
database systems are a relatively recent development that employs a
SQL-like query language to ensure operational consistency on a
horizontally scalable, clustered system. This ensures that loads are
uniformly distributed among servers and that requests are executed
quickly enough to validate the service rate agreement's strictly
predefined objectives. NoSQL and NewSQL database management
systems are commonly designed as distributed database
management systems, offering a single database management
system across multiple nodes. Cloud computing, characterized by
providing faster internet access to archetypal computer systems and
processing tools, is beneficial for developing on-demand usage
spikes. Owing to its eligibility requirements, cloud computing affords
flexibility in the resources that provide a suitable environment for
deploying DDBMSs. [33]

FUTURE TRENDS IN RELATIONAL DATABASES

Relational database management systems (RDBMS) have been the
standard for data persistence for decades. However, the last decade
has seen the rise of new database management systems (DBMS)
such as NoSQL and NewSQL. These systems provide robust
solutions for Web applications and emerging domains, including Big

Data and IoT. NewSQL systems are based on relational models,
while NoSQL offers various storage types, including key-value,
document-oriented, column-oriented, and graph-oriented stores. Both
NoSQL and NewSQL are optimized for high performance and
scalability, functioning as distributed database management systems
(DDBMS). Cloud computing has facilitated this evolution by providing
quick access to commodity hardware through elastic, on-demand
resource provisioning. Infrastructure as a Service (IaaS) is favored for
deploying DDBMS, offering flexibility in compute, storage, and
network resources. [34]

The database landscape has undergone significant changes over the
last decade. A plethora of new database management systems,
typically classified into NoSQL and NewSQL, have evolved. A
NewSQL DBMS is a scalable, distributed system designed for online
transaction processing (OLTP) operations, providing ACID
guarantees inspired by the relational model. On the contrary, NoSQL
DBMSs do not support transactions and joined operations, and they
typically organize and operate on large datasets. A system is not a
“classical” DGBMS as long as it either lacks a SQL-like query
language or does not purely store relations and enforce the
respective relational model features. Aside from this separation, the
classification criteria used to categorize databases include the
storage model, intended purpose, persisting abstractions, distribution
model, distribution of data storage abstractions, and transactional
properties.

Artificial Intelligence Integration

RDBs have been the most popular DBMSs for many years due to
their simplicity and the ability to efficiently manage the ever-growing
volumes of data. However, with the growing volumes of data and its
increasing complexity, the RDBMS has proven to be inefficient.
Therefore, the DBMS industry has been compelled to develop
alternative systems for addressing such tasks. There are numerous
modern DBMS systems for big data on the market, ranging from
traditional relational model-based DBMSs to modern cloud-based and
distributed data processing systems, such as Aurora DB and
Snowflake DB. All modern cloud-based and distributed systems, such
as Apache Cassandra, Amazon Redshift, and Google BigQuery, are
generally built on a distributed architecture.

AI is generating global interest as “smart data” has transformed
working paradigms. Recently, the impact of AI and machine learning
on databases has increased in tandem with the surge in data
volumes, making large-scale data technologies a preferred industry
model. AI addresses the challenges of extensive data spreads and
quickly extracts information, particularly with datasets that are
unsuitable for traditional relational database management systems
(RDBMSs). This is evident in filtering web information and integrating
distant sources. The key goal is to develop adaptable, intuitive, and
efficient modeling schemes, with the evolution of various data models
driving a comparison approach. Historically, the database and AI
fields have collaborated, characterized by established semantics and
the integration of object-oriented systems with knowledge-based
frameworks. [35]

Given the ongoing trend of data growth with an increasing ratio of
unstructured data, it is compelling for modern enterprises to store,
index, and efficiently retrieve their new datasets. Database engines
have historically absorbed many innovations in data processing
paradigms and become the de facto execution back-end. In this
paper, it is claimed that achieving a truly AI-centric database engine
requires moving the DBMS engine from a low-level relational to a
high-level tensor abstraction. This enables multi-modal data

International Journal of Innovation Scientific Research and Review, Vol. 07, Issue 05, pp.8432-8447 May 2025 8437

processing and leverages innovations in hardware and runtimes
developed for tensor computation.

Serverless Database Architectures

Serverless Database Architectures. Its revolutionary on-demand
pricing combined with easy-to-use, scalable compute made event-
driven architectures much more accessible. Consequently, serverless
computing has seen rapid growth, and many cloud providers now
support it. Nevertheless, server-side databases still rely on fixed
provisioning and are inextricably tied to compute serving the same
purpose. This paper opens the black box on the database aspects of
Serverless and presents AnyDB. On an abstract level, it proposes
changes in how events are handled and materialized, which in turn
introduces a novel ecosystem that allows all DBMS systems to work
with a designated event artist. From an infrastructural perspective, it
suggests the beneficial requirements for future Serverless-ready
NoSQL databases and stream handling, which should evolve to
include concepts from the event-driven programming paradigm. [36]

CASE STUDIES OF MODERN RELATIONAL
DATABASES

For approximately fifty years, relational databases have been the
primary solution for storing, retrieving, and managing data. However,
since the early 2000s, the rise of the web, big data, and cloud
technologies has led to the emergence of NoSQL databases, which
are characterized by fault tolerance, high availability, and scalability.
These technologies have made NoSQL databases more accessible
and affordable for managing big data. There are four primary types of
NoSQL databases: document databases, column families (also
known as wide-column stores), key-value stores, and graph
databases. Despite their benefits, NoSQL databases do not provide
all the features of relational databases, which remain popular for
OLTP applications requiring ACID guarantees or complex queries
with sophisticated joins. The development of relational database
management systems has also advanced, incorporating features
such as procedural objects (functions and triggers) written in various
procedural languages. These objects help maintain database integrity
by centralizing constraints, akin to T-SQL for application architects.
However, numerous studies indicate that these procedural objects
can adversely affect database performance, even degrading the
execution of simple SQL queries. This performance drop is tied to the
optimization process, which relies on heuristic rules to create
execution plans, leading to increased complexity and maintenance
challenges for stored procedures. [37]

Successful Implementations

The concept of scaling up has evolved with the rise of affordable,
shared-nothing commodity servers, moving beyond traditional SQL
and enterprise databases. While some enterprise solutions
demonstrate effective scaling, factors such as lower long-term costs,
administrative expertise, and multiple robust out-of-the-box solutions
have led many startups to favor these machines. Consequently, a
regular relational schema is necessary, which entails a slight
scalability trade-off due to the need for specialized management of
buffering, query optimization, and concurrency to maintain ACID
properties. Developers often prefer NoSQL systems to avoid the
bottleneck of centralized databases and the requirement for
predefined schemas.

A relational DBMS is essential and sufficient for most applications.
Scalability may be needed to add servers while accommodating

multiple TBs of data. These requirements render most NoSQL data
stores unviable, making it crucial to find a 3-tier middleware
implementation to enhance the scalability of MySQL, PostgreSQL, or
SQL Server. Although relying on tested software in production is
ideal, that’s often not feasible. In-house development might be
preferred, similar to client and server code, or existing cloud services
complicate middleware control. Therefore, the focus is on analyzing
available off-the-shelf systems. [38]

Lessons Learned from Failures

Distributed Computer Systems Networks span the Web, taking
advantage of the ubiquity of TCP/IP and other IP protocols in Local
and Wide Area Networks. Provisioning and management of
enterprise data centers are enhanced through the utilization of the
utility model, both for hardware procurement and operations, as well
as by renting services. Information Technology now seems so
pervasive within all types of organizations that business models for
Information Technology Services truly appear to represent the wave
of the Future. In a world that is networked end-to-end, everything,
from desktops to large server installations, will be accessed through
networks from unknown and unknowable parts of the globe. The Web
is seen as a superb enabler for many applications that benefit from
the ability to efficiently, reliably, and robustly move data to and from
clients and servers.

While Networks and End Systems have advanced significantly, the
Model of Application Interaction has largely remained unchanged.
Applications utilize protocols such as NFS, FTP, HTTP, CORBA,
DCOM, and SQL for remote resource interfacing, relying on a
transport layer that ensures reliable delivery. This places the
responsibility for fault tolerance and reliability on application servers
and end systems, which offers clean abstractions. However, as
dependence on these services grows, applications often fail in
unpredictable ways, revealing the fragility of distributed systems and
limitations of current models. These failures underscore the urgent
need for robust, secure, and reliable network systems, driving
significant research in distributed services and systems, and
emphasizing the importance of cross-sector dialogue to address core
challenges. [39]

Best Practices for Database Management

This section presents 11 areas of current good practice and makes
connections between them and the evolution of technology.

 Within an organization, multiple databases will exist, and

standards are necessary for them to communicate effectively
with each other over the internet. Online transaction protocols
are necessary for this, and new ones will emerge.

 Clients and intermediaries of a service may have a large
amount of personal and access-restricted data that needs to be
accessed selectively by the service. A new public and open
agreement for brokering remote feeds from private or
authenticated sources may fulfill that role.

 Often, write access to databases is granted to services that
should not have it, e.g., to services with a public API. In this
context, restrict the possibilities when providing a database
service manager URI.

 In scientific instruments and any measurement, the raw data is
collected first. Relating that data to a sample or subject later,
after it has been generated, is necessary for reproducibility.
There needs to be a simple way to annotate raw scientific
measurements with externally resolvable URIs that has a very
low barrier to entry, is valid to disclose, and unambiguous, yet

International Journal of Innovation Scientific Research and Review, Vol. 07, Issue 05, pp.8432-8447 May 2025 8438

allows a machine to uniquely identify the generated data, the
measurement, and the thing measured. [40]

 There should be a clean, simple, predictable, and consistent
way to represent dates, date times, and durations in formats
that are easy and stable to generate in any programming
language.

 There are many services related to projects, deliverables,
products, or the like that are open and list able; however, for
various reasons, it may still be desirable to create a local
replica. That generally needs a compatible representation. For
an object with a series of events, additional cases may then
arise for representing actions and their consequences.

 A point should be reached where any curated information has
machine-process able metadata about who did it, when, how,
and so forth, such that the trust can be extended via transitivity.

 Once a database system reaches a certain size, debugging
one user’s problems within it can become tedious. An
experimental approach to having contracting customers and
DBMS teams agree on handover boundary files that can be
quickly checked post-issue for potential problems is described.

 Since scientific data comes in a wider variety of formats and
encodings than web documents, there is a need to update the
data mediation approach to determine when the original fetch
was a non-CSV file. This will identify the first worksheet of the
file, list the full contents of the used range in the representation,
and provide HTML with a simple form to submit for downloading
the used range in the requested format.

 Based on archaeological evidence, as well as historical data
representations of city names, it is revealed that even median
ages of 50 years are prone to inaccuracies in interpretation. For
improved parts amalgamation or spatial analysis, this lack of
certainty is problematic, and it is proposed that a more
comprehensive change-tracked method be mandated for the
addition and deletion of named entities on records.

 During the lifetime of a project, it is common to work with a
series of similar or recurring entities, such as social scientists
performing repeated services to a sequence of projects. Often,
such new entities should be based on an existing one, but being
distinct, they should be recognizable by their own URI. A simple
mechanism is needed to derive new URIs from existing
ones. [41]

Security Considerations

Databases are essential for individuals and small businesses in
modern computing, although their usage can be subtle. Several
unresolved issues exist in this field, particularly regarding the
management of big data and the development of efficient
technological infrastructures. This subsection reviews computer
science efforts in database management, highlighting current
research and its proximity to active projects. The chapter emphasizes
time constraints, structured into five parts: initial challenges for real-
time data processing, emerging research questions, development of
two key areas, and a concluding overview.

There are numerous directions and issues proposed for study, as
they align with the author's research and are believed to be potential
starting points for developing new and original ideas. Ensuring that
adequate security and privacy mechanisms are in place is important
for the correct operation and safe use of database technology. In
particular, databases have been the target of three main reasons for
many successful attacks: they can hold large quantities of files, often
contain sensitive information, and are open to network access.
Unfortunately, despite intense attention and effort on the matter over
the past thirty years, some welcome improvements have been made;

however, the growth of threats has far outpaced the technology used
to prevent them [42].

Performance Optimization Techniques

In this section, the study outlines the storage methods used for PDB
data and the techniques employed to optimize the database. Further
details concerning the techniques employed will also be discussed.
To achieve the goal, it is crucial to understand certain aspects. A
literature review is conducted on PDB data storage methods and
database optimization techniques for efficient querying. The study
provides details on the optimization techniques employed, serving as
a reliable source. The literature encompasses relational databases for
storing protein structure data, including amino acids, ligands, and
secondary structures, as well as graph databases for protein
information. However, many studies overlooked database
optimization or the overall system efficiency. Thus, a set of
improvements to the system's design is presented and evaluated.

Two particular papers may be cited. The first study outlines a
methodology for optimizing relational databases through
denormalization, a phase that bridges the gap between logical and
physical modeling. The second technique optimizes relational
databases by combining multiple tables into a single table, thereby
reducing the data collection needs for queries. Additionally, another
form, partitioning, is discussed for its features. An algorithm for
optimizing databases using denormalization strategies aims to
enhance analytical query processing of in-memory data. Furthermore,
a study explores various optimization methods for relational
databases, with a focus on improving the data mining process. The
examination reveals that denormalization and indexing can
significantly enhance database performance. However, caution is
needed in using these methods, particularly denormalization. Overall,
if configured correctly, a relational database may offer superior
querying speeds compared to other options.

LITERATURE REVIEW

Al-Khatib et al. (2023) [43] present a novel framework that unifies
disparate databases using an object-oriented approach. Three
phases comprise their architecture: a preprocessing phase that
efficiently gathers data using materialized views, an OODB
construction phase that builds a single object-oriented database, and
a deployment phase that leverages cloud and web-based computing
resources. This comprehensive method outperforms conventional
methods by a factor of 2.49, significantly enhancing query
performance while simplifying the integration of multiple data sources.
For large data scenarios where scalability and agility are crucial, the
paper offers practical management guidance.

A cutting-edge data processing platform, designed explicitly for
pavement quality management, based on the Internet of Things (IoT),
is presented by Hong et al. (2023) [44]. By utilizing a NoSQL
database design, which enables rapid data ingestion and real-time
analysis, the solution mitigates the limitations of conventional
relational databases. The technology significantly reduces data
processing durations, which can exceed 21 ms in traditional systems,
to approximately 0.405 ms, thereby facilitating swift decision-making
on construction sites. This study exemplifies the utilization of
contemporary data architectures to optimize civil engineering
maintenance practices and enhance infrastructure monitoring.

Syeda Husna et al. (2024)[45] develop a comprehensive
cybersecurity trust model in their paper, addressing the numerous
security issues associated with cloud computing. The approach

International Journal of Innovation Scientific Research and Review, Vol. 07, Issue 05, pp.8432-8447 May 2025 8439

combines Quantum Key Distribution (QKD) with a Modified Advanced
Encryption Standard (MAES) to provide multi-layered protection
mechanisms and integrates blockchain technology to build a tamper-
resistant ledger. The framework's remarkable accuracy rate of
99.84% and encryption and decryption operations that take only
milliseconds (2.25 ms and 1.071 ms, respectively) demonstrate its
effectiveness in protecting data from both established and emerging
threats. This study highlights the benefits of decentralized security
solutions in enhancing the integrity and trust of cloud infrastructure.

Chinnasamy et al. (2023)[46] utilize smart contracts and blockchain
technology to address the critical issue of secure data exchange for
health purposes. Their framework offers a decentralized, trust-based
access control system that guarantees the integrity and security of
electronic health records (EHRs). The suggested model utilizes
distributed ledger technology in place of centralized authentication
mechanisms to mitigate the risks of unauthorized access and data
breaches. By enhancing the dependability of mobile cloud-based e-
health services and facilitating real-time monitoring and sharing of
private medical data, this secure sharing mechanism helps to offer
healthcare more safely and effectively.

Haut et al. (2024) [47], concentrating on the 2010 Gulf of Mexico
event, offer a state-of-the-art cloud-based method for evaluating
hyperspectral data to identify oil leaks. To accurately identify oil spills,
especially in complex coastal habitats, the study utilizes the
normalized difference oil index (NDOI) to extract crucial spectral
information. MapReduce with HDFS and Apache Pig are two
examples of distributed computing techniques that the framework
utilizes to efficiently handle the massive amounts of data inherent in
remote sensing applications. This scalable system enables prompt
and precise decision-making in response to ecological emergencies
by accelerating processing times and providing a robust foundation
for real-time environmental monitoring and disaster management.

Using distributed representation models, Khan et al. (2023)[48] offer
a unique method for identifying emergent topic patterns in streaming
news data. To analyze trending topics in real-time as they evolve,
their News Sequential Evolution Model (NSEM) utilizes word2vec to
capture semantic linkages across sequential datasets. The framework
enhances trend detection accuracy and provides decision-makers in
dynamic situations with intuitive insights by incorporating a visual
display model and creating a knowledge graph. This paper addresses
significant challenges in processing massive text streams and offers a
scalable solution for various market analysis and social media
monitoring applications.

A thorough analysis of how cloud computing technologies are
changing industrial operational technology (OT) networks can be
found in Perducat et al. (2023) [49]. This research examines the
evolution of conventional models, such as the ISA-95 framework, in
light of new developments, including zero-trust architectures and
policy-based software-defined networks. By investigating the
integration of cloud solutions with legacy OT infrastructures, the study
highlights the security concerns prevalent in contemporary industrial
environments, as well as the opportunities for enhanced connectivity.
This thorough research is a crucial tool for understanding how OT
networks are evolving in response to digital convergence.

Matthew et al. (2024) [50] propose an inventive architecture for
creating e-health data warehouses that utilizes machine learning
techniques to enhance data mining procedures. To facilitate risk
management, fraud detection, and identity authentication, the project
focuses on integrating multimodal healthcare records with smart
sensor data within a cloud-based system. The authors employ a

bimodal sensor access technique, supported by artificial neural
networks, to demonstrate how enhanced data mining can improve
decision support in cutting-edge e-healthcare services. This work
highlights the significance of scalable data architectures in addressing
the complex challenges of contemporary healthcare data
management.

The NODW framework, presented by Imran et al. (2021) [51],
promotes a paradigm change in data warehousing in significant data
contexts by moving away from conventional relational databases and
toward NoSQL-based solutions. The framework maximizes data
aggregation and query efficiency in online analytical processing
scenarios by utilizing the capabilities of column-oriented storage
systems, particularly Apache Cassandra. By overcoming the
drawbacks of traditional ETL procedures and relational join
operations, the suggested paradigm improves scalability and
efficiency. It is ideally adapted to manage the growing amounts of
diverse data. This study presents a compelling perspective on
integrating NoSQL technology into modern data warehousing
architectures.

Ionescu and Diaconita (2023) [52] investigate how financial
decision-making is being revolutionized by the convergence of
artificial intelligence, cloud computing, and improved data
management technologies. This thorough assessment examines the
transition from conventional relational database systems to
contemporary big data designs, which utilize technologies such as
Hadoop, Apache Spark, and Blockchain for secure, real-time data
processing. The paper addresses the challenges of data security and
system integration, while highlighting the notable gains in operational
efficiency, risk management, and predictive analytics that are made
possible by combining these technologies. For financial organizations
seeking to establish more data-driven and responsive operational
frameworks, this synthesis provides valuable insights.

To handle the complexity of distributed systems, such as blockchains
and distributed ledgers, Di Pilla et al. (2023)[53] propose a novel
auditing architecture. To monitor, analyze, and categorize log data in
real-time, the article introduces the DELTA tool, a Distributed Elastic
Log Text Analyzer that leverages artificial intelligence, natural
language processing, and advanced data analytics. The study
demonstrates how systematic log auditing can identify vulnerabilities,
detect anomalies, and facilitate proactive mitigation techniques
across various distributed contexts by integrating Docker-based log
collection with the ELK stack for storage and visualization.

The revolutionary significance of data engineering at the intersection
of artificial intelligence, machine learning, and cloud computing is
examined by Muthusubramanian and Jeyaraman (2023) [54]. The
study examines the importance of robust data engineering methods in
developing scalable cloud architectures and optimizing advanced
machine learning and artificial intelligence applications. The authors
emphasize the importance of integrated approaches in achieving
enhanced system performance and operational efficiency by
thoroughly examining current trends and challenges and highlighting
the synergistic relationship between effective data pipelines and
cutting-edge computational models.

Revathi et al. (2023) [55] present an automatic translation approach
that transforms relational database schemas into non-relational JSON
documents. Without interfering with existing configurations, the
proposed algorithm facilitates a seamless transition from conventional
SQL-based systems to document-oriented NoSQL databases. When
tested on a dataset from a hospital management system, the model
demonstrates that it can maintain important relational data while

International Journal of Innovation Scientific Research and Review, Vol. 07, Issue 05, pp.8432-8447 May 2025 8440

providing the performance, scalability, and flexibility characteristic of
NoSQL environments, thereby meeting the increasing demands of big
data applications.

Wang et al. (2024)[56]offer a hybrid approach that combines robust
cloud computing infrastructures with cutting-edge deep learning
algorithms to improve tailored search. To capture complex user
preferences and query semantics, their method employs a multi-layer
transformer model enhanced by hierarchical attention networks.
Cloud-based deployment ensures the system's scalability, enabling
real-time processing and responsiveness. Significant gains in search
accuracy and user satisfaction are demonstrated by experimental
evaluations, establishing this integrated approach as a viable solution
for contemporary search engines addressing complex and large-scale
data challenges.

The strategic change of SAP's business model within the dynamic
database management system (DBMS) market is examined in a
teaching case presented by Balodi et al. (2023) [57]. In line with
broader industry trends toward cloud usage and digital convergence,
the paper documents the transition from conventional, pipeline-based
database management system (DBMS) solutions to a holistic platform
approach. It examines the pressures from competitors, especially
Oracle. It discusses the crucial strategic decisions SAP must make to
maintain its market leadership and adapt to new customer value
propositions in a rapidly changing environment.

A viewpoint on the evolution of control systems in the cloud
computing era is provided by Xia (2024) [58]. Cloud-based control
systems (CCSs) are proposed as the architecture of the future,
following a study that examines how the enormous amounts of data
and real-time requirements of modern industrial applications
challenge traditional networked control systems. The study
emphasizes intriguing pathways, such as data-driven cloud control
and model-predictive cloud management, by leveraging the
computational power and scalability of cloud computing. These
methodologies are particularly relevant for complex applications, such
as industrial automation and intelligent connected vehicles. This
paper establishes the theoretical foundation for subsequent research
on integrating control theory with cloud architectures.

The query optimisation technique presented by Alyas et al. (2022)
[59] is designed for graph databases operating in cloud dew
environments. The framework addresses the specific issues posed by
distributed systems in relation to graph data structures,
encompassing resource allocation and efficient query processing.
The authors utilize cloud-based techniques to demonstrate improved
performance when handling complex graph queries, thereby
increasing scalability and reducing response times. Since it offers
insightful information on how to optimize graph database operations
in cloud settings, this work is a significant step towards more efficient
big data analytics in networked systems.

The revolutionary shift from cloud-native to AI-native computing is
examined by Lu et al. (2024) [60] in the context of massive
generative models. To better meet the resource-intensive needs of
large AI models, such as ChatGPT and similar programs, the paper
explains how traditional cloud infrastructures are being transformed.
The authors demonstrate the challenges of cost, scalability, and GPU
resource availability by contrasting large-model-as-a-service with
cloud database services. They propose an AI-native paradigm that
integrates advanced machine learning runtime frameworks with
cloud-native architectures. This paper offers a prospective view on
the convergence of AI with cloud computing, delineating potential
research avenues and practical applications.

Through data-driven decision-making, Naeem et al. (2024)[61]
investigate how sophisticated database systems might improve
corporate intelligence. The paper examines different database
architectures, ranging from contemporary big data platforms to
conventional relational systems, and highlights how their integration
can facilitate strategic decision-making and real-time analytics. The
study compares various systems, highlighting their advantages in
terms of processing speed, scalability, and the ability to handle
diverse data sources. This thorough analysis highlights the
importance of developing database technologies in facilitating
informed decision-making in today's competitive commercial
environment.

Al-Kateeb (2024) [62] explores the potent combination of big data
analytics, cloud computing, and the Internet of Things (IoT). The
study describes how these technologies work together to create a
networked ecosystem that can revolutionize data gathering,
processing, and analysis across various sectors. By addressing the
potential and challenges, such as scalability, data protection, and
effective resource management, the study demonstrates how
integrated solutions may promote operational efficiency, innovation,
and proactive decision-making. This study demonstrates how a
coordinated strategy can yield valuable insights and foster a more
adaptable technological future.

The impact of cloud-based accounting education on academic
achievement at Omani universities, both during and after the COVID-
19 pandemic, is evaluated by Tawfik and Elmaasrawy (2023) [63].
The study highlights the important human, cultural, social,
technological, and economic factors that influence the evolution of
cloud-based accounting education, as well as student outcomes,
through a structured survey and partial least squares data analysis.
For governments and educational institutions seeking to enhance e-
learning strategies, particularly in addressing post-pandemic
educational challenges, the findings provide crucial insights.

A cloud-based approach designed to manage the large and intricate
datasets produced by satellite remote sensing is presented by Wang
et al. (2024) [64]. The study examines the volume, variety, velocity,
authenticity, and utility of big data derived from remote sensing, as
well as the resulting challenges in processing, storing, and analyzing
it. The authors provide a comprehensive platform that improves data
fusion, administration, and accessibility by utilizing cloud computing
technology. The study highlights the relevance of cloud solutions in
supporting crucial decision-making processes in domains such as
resource management and environmental monitoring, while outlining
the technological challenges and potential opportunities for enhancing
remote sensing applications.

International Journal of Innovation Scientific Research and Review, Vol. 07, Issue 05, pp.8432-8447 May 2025 8441

DISCUSSION AND COMPARISON

Table 1: Comparative analysis of all evaluated papers.

No. Database Type /
Focus

Performance
Evaluation Metrics

Technology &
Tools

Data Model /
Conceptual
Framework

Scalability Flexibility Limitations

[43] Integration of
cloud objects for
heterogeneous
data

assessed using
integration
efficiency (Details
are not entirely
clear.)

Cloud computing:
design that is
focused on objects

Object-
focused

made to handle
diverse data;
probably
scalable

High:
accommodates a
range of data
formats

Complexity of
integration;
details are not
quite clear

[44] NoSQL for
managing the
quality of IoT
pavements

Speed of data
collection:
comparison
between 0.405 ms
and 21.146 ms

Cloud computing,
big data analytics,
and the Internet of
Things

NoSQL, or
not-relational

Designed to
handle large
volumes of data
in real time

Schema-free
structure allows for
flexibility.

Conflicts
between
consistency and
support for
complicated
queries

[45] Based on a
structure of trust
for cybersecurity

Qualitative
indicators of
reliability and
danger mitigation

Cloud technology
and crypto

A distributed
database

Potential issues
with scaling in
blockchain
technology

Sturdy construction

Limitations with
flexibility and
connection with
older systems

[46] Safe
communication in
smart electronic
health systems
was made
possible by smart
contracts.

Evaluation of
security efficiency
and access
management
qualitatively

the digital ledger,
smart contracts,
and mobile clouds

Distributed
(influenced by
blockchain)

scalable in
situations
involving mobile
devices

Depending on
modifications to the
smart contract

Dependence on
cryptocurrency
efficiency and
network latency

[47] Based on the
cloud
hyperspectral
analysis of
images for
identifying oil
spills

Metrics of memory
usage and
processing
performance were
provided.

Big data, satellite
imaging, and the
Internet of Things

Multifaceted
arrays of
images

Large datasets
are supported
via cloud
infrastructure.

Extremely flexible
for a variety of
picture data

Computational
overhead for
hyperspectral
information with
extremely high
resolution

[48] Analyzing
streaming text
data to identify
patterns in
popular topics

The style detection
reliability and
delays (qualitative
evaluations)

NLP, streamed
analytics, as well
as distributed
models (like
word2vec)

Vector
interpretations
in the form of
text

Developed for
flow analysis in
real time

Adjusts to changing
subjects

Capturing small
semantic
changes over
time might be
challenging.

[49] Evolution of
industrial
operational
networks (with an
emphasis on
cloud integration)

Measurement of
qualitative
performance of
networks
(throughput,
latency)

Cloud computing
and the integration
of industry OT

Process-
oriented (not
specifically
defined)

allows for the
integration of
many OT
devices.

Connects to older
OT devices

Convergence
between
information
technology and
operational
technology and
security
standardization
challenges

[50] E-health data
analysis and
designing
warehouses

Metrics regarding
query effectiveness
and data analysis
accuracy were
published.

Usage in e-health,
analysis of data,
and artificial
intelligence

multifaceted;
star structure

Designing
scalable
warehouses for
big health
information

A structured
framework may
limit rapid
modifications.

Integrating
diverse health
data while
preserving data
quality

[51] Big data from a
NoSQL approach
for information
warehouses

Enhancements to
query speed;
evaluation of the
impact of join
procedures

NoSQL technology
(like Apache
Cassandra) with
big data analytics

Complex,
schema-less
star models

Scalable
distributed
structure

High adaptability in
schema
architecture

Trade-offs for
reliability,
difficulties with
intricate join
operations

[52] a hybrid system
that combines
NoSQL and
traditional
components

Evaluation of the
effectiveness of
real-time
processing and risk
estimation

Large amounts of
data, the
blockchain, cloud-
based computing,
and AI

Models of
hybrid data

extremely
scalable using
cloud-based
solutions

uses a variety of
data management
techniques

Problems of
unification;
difficulties with
combining data
and security

[53] Distribution of
system auditing
(log analysis for
cybersecurity)

Qualitative
enhancements in
recognizing
anomalies and
analysis

Advanced
analytics, AI,
natural language
processing, and
the Docker and
ELK stack for
collecting logs

A traceability
scheme based
on logs

Scaling with
attention to
distributed
systems

Adaptable
integration with
different
frameworks

Dependent on
log styles, limited
consistency

[54] Advances in data
engineering that
combine cloud,
machine learning,
and AI

Perspectives on
efficiency and
optimization (not
precisely
measured)

AI, ML, computing
in the cloud, and
sophisticated data
engineering
methods

Data
engineering
information
model/pipeline

Scalable through
cloud-based
systems

Modular and
flexible methods for
data engineering

Heterogeneous
system
integration
challenges and
changing
approaches

International Journal of Innovation Scientific Research and Review, Vol. 07, Issue 05, pp.8432-8447 May 2025 8442

[55] Relationship
documents are
automatically
converted to non-
relational entities.

Evaluation of the
transformation's
accuracy and
efficiency (minimum
details)

Techniques for
data conversion
that automate
translation

Relationship
→ text-
oriented
translation
type
manages
enormous
databases
when
appropriately
automated

manages
enormous
databases when
appropriately
automated

transforms
automatically while
requiring little
physical labor.

Limited
assessment of
various database
structures;
customization
might be
necessary

[56] Using AI to
improve tailored
search

Average precision
increased by 15%,
cost effectiveness
improved by 12%,
and 95% of
inquiries had a
latency of less than
200 ms

Custom software,
cloud computing,
and deep learning

Customized
search model
(multi-layer,
dynamic)

scalable by the
use of cloud
resources (like
AWS)

Extremely flexible
about user
information and
search settings

Privacy issues
and the difficulty
of integrating
with outdated
search systems

[57] The development
of SAP's business
model and the
DBMS industry

Market research
and competitive
positioning are
used to evaluate
the strategic
effectiveness.

The business
model evaluation,
migration to the
cloud, and a case
study of the DBMS
industry

Business
model
transition from
funnel to
interface

Migration to the
cloud improves
flexibility

Adaptable change
of business models

Pressures from
competitors and
difficulties in
winning the trust
of customers

[58] Controllers that
run on the cloud
for contemporary
industrial
applications

Qualitative
evaluation of
management
effectiveness and
system
effectiveness

Integration of
sensor data,
management
systems, and
cloud computing

Cloud
resource
integration in
the control
design

Scalable if more
IoT and control
devices are
added

Capable of
adjusting to
intricate industrial
procedures

Real-time
processing
difficulties and
computational
constraints

[59] A technique for
optimizing queries
in cloud dew
graph databases

reported gains in
optimization
effectiveness and
query time of
execution

Optimization of
query strategies,
cloud and rain
computing
platforms, and
graph databases

A data
structure that
is graph-
oriented

Designed for
dispersed cloud
dew situations in
mind

Adjusts to changing
patterns of graph
queries

For really big
graphs, more
tuning might be
necessary;
integration
overhead

[60] Using AI-native
computing instead
of cloud-native
computing for big
models that
generate

explains throughput
enhancements,
such as up to 14x in
specific techniques.

Containerization,
distributed
computing,
creative AI
models, and cloud
native designs

A hybrid
strategy that
transitions
from cloud-
based to AI-
native

Auto-scalable
and scalable with
container
orchestration

Adaptable via
dynamic scalability
and multi-tenant
architectures

High
interpretation
costs, difficulties
accessing
resources, and
the complexity of
integration

[61] sophisticated
databases for
company
intelligence
(decisions based
on data)

evaluated using
profitability and
processing
performance (both
qualitative and
quantitative
findings).

Hadoop, Spark,
big data analytics,
sophisticated
DBMS technology,
and hybrid
systems

Mixed and
multifaceted
models

Extremely
scalable with
cloud-based and
distributed
platforms

Adaptable
combination of
various data
storage strategies

Complexity of
integrating with
old systems;
difficulties
brought on by
the quick
advancement of
technology

[62] Combining big
data, cloud
computing, and
IoT to get
revolutionary
results

assessed using
operational
effectiveness,
security of
information, and
continuous
processing
(qualitative insights)

The cloud,
computing at the
edge, big data
analytics, and the
Internet of Things

The big-data
environment
with integrated
IoT and cloud

Distributed and
cloud-based
technologies that
are very scalable

Adaptable
integration between
various data and
sensor sources

Challenges with
data security and
privacy,
difficulties with
managing
enormous
amounts of data

[63] Oman's academic
achievement and
accounting
through cloud
instruction

utilizes PLS path
coefficients, which
reveal strong
positive correlations
between variables.

Cloud technology,
online learning
environments, and
survey-based
analyses (PLS)

Conceptual
framework
combining
economic,
technological,
cultural, and
social aspects
that impact
cloud-based
learning

Prioritized
uptake of
education over
scale.

encourages the
use of hybrid
(online and in-
person) teaching
methods

Only students
are included in
the sample;
faculty
viewpoints are
absent, and
survey-based
self-report biases

[64] Cloud-based
system and
solutions for
remotely collected
Big Data (RSBD)

displays efficiency
measures and real-
time processing
information, such
as query response
time of less than
one second.

Integrated tables,
geographic
information
systems, internet
computing,
simultaneous
processing, and
flexible data
sharing

Multifaceted
picture and
metadata
model for
remote
sensing

Extremely
scalable (made
for worldwide
coverage and
PB-level data)

Incredibly
adaptable by
combining data
from multiple
sources and scales

Integration
difficulties,
perhaps
exorbitant cloud
storage
expenses, and
intricate data
mining
specifications

International Journal of Innovation Scientific Research and Review, Vol. 07, Issue 05, pp.8432-8447 May 2025 8443

An extensive table presents an integrated review of 22 research
publications covering various facets of contemporary data
management and processing systems. Cloud-based object-oriented
integration, NoSQL architectures for Internet of Things applications,
blockchain-based security models, sophisticated data warehousing
systems for business intelligence, and even big data solutions for
remote sensing are all included in the table, categorized by their
respective areas of focus. Key performance indicators, including
processing speeds, query execution improvements, and throughput
upgrades, are compiled along with the underlying technologies (such
as blockchain, cloud computing, IoT, and AI) and the corresponding
data models or conceptual frameworks used. Additionally, the chart
outlines the flexibility and scalability of each strategy, highlighting how
these systems manage massive, diverse datasets, as well as their
drawbacks, such as trade-offs in consistency or complexity, and
integration difficulties. The table provides a helpful overview of the
various ongoing research initiatives and technological advancements
in the domains of cloud computing, data engineering, and related
areas.

EXTRACT STATISTICS

The assessment metrics integrate both qualitative and quantitative
insights to deliver a holistic perspective on system performance.
Efficacy and efficiency are significant topics, with a particular focus on
processing performance and query speed. Regular qualitative
evaluations evaluate managerial effectiveness, risk estimation, and
reliability. Quantitative metrics highlight enhancements, including data
collection speeds ranging from 0.405 ms to 21.146 ms, a 15%
increase in average precision, and a 12% improvement in cost
efficiency. The strategic focus on operational efficiency and security is
further underscored by other key metrics, including memory
utilization, real-time query response times of under one second, and
throughput enhancements of up to 14 times. When combined, these
metrics provide a robust framework for assessing overall
performance, identifying anomalies, and optimizing systems in both
technical and strategic contexts, as demonstrated in Figure. 3.

Figure 3: A statistical depiction of the frequency of Evaluation
Metrics for Performance.

Scalability is a recurring theme in the frequency analysis, as
evidenced by the 14 instances where the terms "scalable" or "scaling"
are explicitly used, highlighting its crucial importance in system
design. Significant focus is placed on cloud-based scalability,
referenced on seven occasions, underscoring the dependence on
cloud infrastructure for accommodating substantial data quantities
and facilitating real-time processing. Distributed architectures are a
prevalent theme, with three references emphasising the imperative
for distributed solutions to manage data flow and provide resilient
performance across geographically scattered systems. Additionally,
scalability difficulties in developing domains such as mobile and IoT
settings are acknowledged, noted on two occasions. At the same

time, the notion of auto-scalability via container orchestration
emerges as a specialised yet significant method. The overall
frequency makes it abundantly evident that contemporary system
designs must be dynamically adaptable and able to handle ever-
increasing and diversified data demands, even though one example
juxtaposes scalability with the importance of education (see Figure 4).

Figure 4: A statistical depiction of the prevalence of Scalability.

System adaptability is heavily emphasised, according to the
frequency analysis of keywords related to flexibility. The word
"adaptable" is used seven times, indicating that the design prioritizes
flexibility to easily interact with other frameworks, data sources, and
changing requirements. The system's ability to support a variety of
data formats and user preferences, including schema-free structures
and adjustable search options, is highlighted by the four instances in
which the term "flexible" is used. Furthermore, three uses of the word
"adjust" (or its variations) emphasise the significance of dynamic
responsiveness, whether that be adjusting to shifting topics, business
models, or data patterns. All things considered, as shown in Figure 5,
these frequency counts indicate that flexibility is a crucial design
objective, ensuring the system can adapt to a wide range of rapidly
changing operational environments.

Figure 5: Flexibility's frequency represented statistically.

Operational issues and system integration emerge as key topics in
the frequency table, which clearly shows a pattern of recurring
difficulties. "Difficulties" is the most commonly used term, implying a
broad variety of challenges that continuously impact many facets of
system deployment and maintenance. Additionally, "integration" and
its variations receive considerable attention, highlighting the
difficulties of combining different systems. The constant reference to
complexity and data management suggests that managing large,
complex datasets is a persistent challenge that warrants serious
consideration and innovative solutions. Furthermore, the existence of
security and privacy issues underscores the importance of
information protection in this rapidly evolving technological
environment. Overall, the frequency counts suggest that resolving
operational obstacles, ensuring smooth system integration, and

International Journal of Innovation Scientific Research and Review, Vol. 07, Issue 05, pp.8432-8447 May 2025 8444

maintaining strong data security are interconnected problems that
require coordinated plans and creative solutions, as illustrated in
Figure. 6.

Figure 6: Statistical representations of frequencyLimitations.

Recommendation

Anyone working in database administration or research should read
this paper since it provides a thorough examination of the
development of relational databases. It offers a critical study of the
move towards cloud-based and distributed architectures in addition to
revisiting the fundamental ideas of conventional RDBMS.

Principal strengths encompass:

The evolution of relational databases from centralised systems to the
more dynamic, scalable forms we see today is explained in a great
historical perspective. This background clarifies for readers why
contemporary problems call for more recent models.

A thorough analysis of the shortcomings of old models paved the way
for the development of NoSQL and NewSQL systems. The
advantages and disadvantages of SQL-based systems and these
more recent paradigms are skillfully contrasted in the study.

Perceptive segments on contemporary topics, like AI integration and
serverless database systems. These anticipatory insights are
particularly beneficial for IT professionals and system architects
devising future technological plans.

The difficulties of integrating data across dispersed systems, security,
and performance optimisation are all covered in this thorough
analysis of database administration best practices.

Overall, the article offers practical insights and a robust framework for
understanding how evolving data demands are shaping new
technologies, serving as both a retrospective and a roadmap for the
future of database management.

CONCLUSION

This study concludes by demonstrating the amazing evolution from
conventional, centralised relational databases to contemporary
distributed and cloud-based systems. It illustrates how persistent
issues, such as strict schemas, scalability constraints, and intricate
transaction management, have prompted the creation of data
structures that are more adaptable, scalable, and effective. The way
businesses handle and process large, varied datasets has undergone
significant changes with the adoption of NoSQL and NewSQL
paradigms, as well as the integration of AI and serverless
technologies. Ultimately, the paper emphasizes that although classic
RDBMS frameworks remain fundamental, adopting contemporary
technologies is crucial for meeting the increasing demands of global

connectivity and real-time data processing in today's digital
landscape.

REFERENCES

[1] V. Govindaraj, "The Future of Mainframe IDMS: Leveraging

Artificial Intelligence for Modernization and Efficiency," Journal
of Advanced Computer Science & Applications, 2024.
researchgate.net

[2] M. R. Anwar, R. Panjaitan, and R. Supriati, "Implementation of
Database Auditing by Synchronization DBMS," in IT Service
Management, 2021. academia.edu

[3] L. Li and J. Zhang, "Research and analysis of an enterprise E-
commerce marketing system under the big data environment,"
Journal of Organizational and End User Computing, vol. 2021.
igi-global.com

[4] Y. Himeur, M. Elnour, F. Fadli, N. Meskin, I. Petri, "AI-big data
analytics for building automation and management systems: a
survey, actual challenges and future perspectives," Artificial
Intelligence, vol. 2023, Springer, 2023. springer.com

[5] Y. Aldwyan and R. O. Sinnott, "Elastic deployment of
container clusters across geographically distributed cloud data
centers for web applications," Software: Practice and
Experience, vol. 51, no. 5, pp. 1021-1042, 2021. [HTML]

[6] Y. Mansouri, F. Ullah, S. Dhingra, "Design and implementation
of fragmented clouds for evaluation of distributed databases,"
Transactions on Cloud, vol. 2023. [PDF]

[7] C. Xu, X. Du, X. Fan, G. Giuliani, Z. Hu, "Cloud-based storage
and computing for remote sensing big data: a technical
review," Journal of Digital, vol. 2022, Taylor & Francis.
tandfonline.com

[8] E. S. Kumar, S. Kesavan, and R. C. A. Naidu,
"Comprehensive analysis of cloud-based databases," in IOP
Conference Series, 2021. iop.org

[9] J. J. K. Behan, A. Inam, M. Ali, and M. T. Khan, "Comparative
analysis of RDBMS and NoSQL databases," Knowledge and
Data, 2022. upv.es

[10] H. Yu, "The application and challenges of ChatGPT in
educational transformation: New demands for teachers' roles,"
Heliyon, 2024. cell.com

[11] J. C. Recker and R. Lukyanenko, "From representation to
mediation: a new agenda for conceptual modeling research in
a digital world," MIS Quarterly, vol. 2021. qut.edu.au

[12] M. Nielsen, "Propertius through Wilson: Books of Latin Love
Poetry as Objects," 2023. unc.edu

[13] K. Tatsis, "A quantitative study on the popularity and
performance of SQL and NoSQL DBMS," 2022. diva-
portal.org

[14] S. Morozova, "Uses and relevancy of old and new
programming languages," 2023. theseus.fi

[15] A. Shuparskyy and Y. Furgala, "SELECTED ASPECTS OF
DIGITAL REPRESENTATION OF INFORMATION
SYSTEMS," Electronics and Information, 2024. lnu.edu.ua

[16] G. O'Regan, "Birth of software industry and human computer
interaction," A Brief History of Computing, 2021. [HTML]

[17] N. K. Miryala, "Evolving Trends in Open-Source RDBMS:
Performance, Scalability and Security Insights,"
researchgate.net, researchgate.net

[18] V. Yatsyshyn, O. Pastukh, R. Zharovskyi, "Software tool for
productivity metrics measure of relational database
management system," Математичне …, 2023. irbis-
nbuv.gov.ua

[19] J. Zhou, M. Xu, A. Shraer, B. Namasivayam, A. Miller,
"FoundationDB: a distributed key value store," in ACM
SIGMOD, 2022. sigmodrecord.org

International Journal of Innovation Scientific Research and Review, Vol. 07, Issue 05, pp.8432-8447 May 2025 8445

[20] B. Modu, M. P. Abdullah, M. A. Sanusi, et al., "DC-based
microgrid: Topologies, control schemes, and
implementations," Alexandria Engineering Journal, vol. 2023,
Elsevier. sciencedirect.com

[21] A. K. Sandhu, "Big data with cloud computing: Discussions
and challenges," Big Data Mining and Analytics, 2021.
ieee.org

[22] H. M. Elgohary, S. M. Darwish, and S. M. Elkaffas, "Improving
uncertainty in chain of custody for image forensics
investigation applications," IEEE Access, 2022. ieee.org

[23] F. Song, Z. Qin, L. Xue, J. Zhang, and X. Lin, "Privacy-
preserving keyword similarity search over encrypted spatial
data in cloud computing," *IEEE Internet of Things Journal*,
vol. 8, no. 5, pp. 3456-3468, 2021. uwaterloo.ca

[24] W. Khan, T. Kumar, C. Zhang, K. Raj, and A. M. Roy, "SQL
and NoSQL database software architecture performance
analysis and assessments—a systematic literature review,"
Big Data and Cognitive Computing, vol. 2023. mdpi.com

[25] M. Ismail, N. El-Rashidy, and N. Moustafa, "Mobile cloud
database security: problems and solutions," Fusion: Practice
and …, 2021. researchgate.net

[26] J. Robinson, R. Ranjan, W. Hu, "Relbench: A benchmark for
deep learning on relational databases," in Advances in ...,
2024. neurips.cc

[27] S. H. Alfred, O. A. Augusta, and L. K. Egi, "Impact of
distributed database management system to individuals,
institutions, and organizations all over the world," BW
Academic Journal, 2022. bwjournal.org

[28] A. Skiadopoulos, Q. Li, P. Kraft, K. Kaffes, D. Hong, "DBOS: A
DBMS-oriented operating system," 2021. mit.edu

[29] K. Siau, C. Woo, V. C. Storey, R. H. L. Chiang, and C. E. H.
Chua, "Information systems analysis and design: past
revolutions, present challenges, and future research
directions," 2022. mst.edu

[30] G. W. Kyro, A. M. Smaldone, Y. Shee, C. Xu, "T-ALPHA: A
Hierarchical Transformer-Based Deep Neural Network for
Protein–Ligand Binding Affinity Prediction with Uncertainty-
Aware Self-Learning for Protein …," in *Journal of Chemical
Information and Modeling*, 2025. biorxiv.org

[31] P. Vikström, M. Larsson, E. Engberg, and S. Edvinsson, "The
Demographic Database—History of Technical and
Methodological Achievements," SOWING, 2023. oapen.org

[32] S. Youssef, "… for Large-Scale Enterprise Applications: A
Comprehensive Study on Techniques, Challenges, and the
Integration of SQL and NoSQL Databases in Modern …,"
ResearchGate, . researchgate.net

[33] T. Taipalus and H. Grahn, "NewSQL database management
system compiler errors: Effectiveness and usefulness,"
International Journal of Human–Computer Interaction, vol.
39, no. 1, pp. 1-12, 2023. tandfonline.com

[34] W. Qi, M. Sun, and S. R. A. Hosseini, "Facilitating big-data
management in modern business and organizations using
cloud computing: a comprehensive study," Journal of
Management & Organization, 2023. researchgate.net

[35] M. M. Rathore, S. A. Shah, D. Shukla, and E. Bentafat, "The
role of AI, machine learning, and big data in digital twinning: A
systematic literature review, challenges, and opportunities," in
IEEE, 2021. ieee.org

[36] A. Mampage, S. Karunasekera, and R. Buyya, "A holistic view
on resource management in serverless computing
environments: Taxonomy and future directions," ACM
Computing Surveys, vol. 2022. [PDF]

[37] M. Naeem, T. Jamal, J. Diaz-Martinez, and S. A. Butt, "Trends
and future perspective challenges in big data," in *Intelligent
Data Analysis*, vol. 2022, Springer. minciencias.gov.co

[38] K. Reddy, "Scalable Data Management in Distributed
Systems: A Sharding-Based Approach for Multi-Tenant
Architectures," International Journal of Emerging Research in
…, 2024. ijeret.org

[39] A. Sunyaev, "Applications and Systems Integration," in
Internet Computing: Principles of Distributed Systems, 2024,
Springer. [HTML]

[40] S. Mukherjee, D. Stamatis, J. Bertsch, et al., "Genomes
OnLine Database (GOLD) v. 8: overview and updates,"
Nucleic Acids Research, vol. 49, no. D1, pp. D1-D6, 2021.
oup.com

[41] C. J. Markiewicz, K. J. Gorgolewski, F. Feingold, R. Blair, et
al., "The OpenNeuro resource for sharing of neuroscience
data," Elife, 2021. elifesciences.org

[42] Ö Aslan, S. S. Aktuğ, M. Ozkan-Okay, A. A. Yilmaz et al., "A
comprehensive review of cyber security vulnerabilities,
threats, attacks, and solutions," Electronics, 2023. mdpi.com

[43] Al‐Khatib, R. M., El‐Omari, N. K. T., & Al‐Betar, M. A. (2023).
An innovative cloud computing object‐oriented model to unify
heterogeneous data. International Journal of Operational
Research, 46(3), 289–322.
https://doi.org/10.1504/IJOR.2023.129410.

[44] Hong, S.-S., Lee, J., Chung, S., & Kim, B. (2023). Fast real-
time data process analysis based on NoSQL for an IoT
pavement quality management platform. Applied Sciences,
13, 658. https://doi.org/10.3390/app13010658

[45] Husna, S., Barmavatu, P., et al. (2024). A blockchain-based
cybersecurity trust model with a multi-risk protection scheme
for secure data transmission in cloud computing. Cluster
Computing. https://doi.org/10.1007/s10586-024-04481-9.

[46] Chinnasamy, P., Albakri, A., Khan, M., Raja, A. A., Kiran, A.,
& Babu, J. C. (2023). Smart contract-enabled secure sharing
of health data for a mobile cloud-based e-health system.
Applied Sciences, 13, 3970.
https://doi.org/10.3390/app13063970.

[47] Haut, J. M., Moreno-Alvarez, S., Pastor-Vargas, R., Perez-
Garcia, A., & Paoletti, M. E. (2024). Cloud-based analysis of
large-scale hyperspectral imagery for oil spill detection. IEEE
Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, 17, 2461.
https://doi.org/10.1109/JSTARS.2023.3344022.

[48] Khan, Z. A., Xia, Y., Ali, S., Khan, J. A., Askar, S. S.,
Abouhawwash, M., & El-Rashidy, N. (2023). Identifying hot
topic trends in streaming text data using news sequential
evolution model based on distributed representations. IEEE
Access, 11. https://doi.org/10.1109/ACCESS.2023.3312764.

[49] Perducat, C., Mazur, D. C., Mukai, W., Sandler, S. N.,
Anthony, M. J., & Mills, J. A. (2023). Evolution and Trends of
Clouds on Industrial OT Networks. OJIA, 4.
https://doi.org/10.1109/OJIA.2023.3309669.

[50] Matthew, U. O., Onumaku, V. C., Fatai, L. O., & Adekunle, T.
(2024). E-Healthcare data warehouse design and data mining
using ML approach. International Journal of Advanced
Computer Science and Applications, 1, Article 84.
https://doi.org/10.4018/979-8-3693-4439-2.ch013.

[51] Imran, S., Mahmood, T., Khan, A. H., Qamar, A. M., Siddiqui,
A. J., Ahmed, I., & Rehman, N. (2021). NODW framework for
data warehousing – A NoSQL big data perspective. Journal of
LaTeX Class Files, 14(8).

[52] Ionescu, S.-A., & Diaconita, V. (2023). Transforming financial
decision-making: The interplay of AI, cloud computing and
advanced data management technologies. International
Journal of Computers Communications & Control, 18(6),
Article 5735. https://doi.org/10.15837/ijccc.2023.6.5735.

International Journal of Innovation Scientific Research and Review, Vol. 07, Issue 05, pp.8432-8447 May 2025 8446

[53] Di Pilla, P., Pareschi, R., Salzano, F., & Zappone, F. (2023).
Listening to what the system tells us: Innovative auditing for
distributed systems. Frontiers in Computer Science, 4,
1020946. https://doi.org/10.3389/fcomp.2022.1020946

[54] Muthusubramanian, M., & Jeyaraman, J. (2023). Data
engineering innovations: Exploring the intersection with cloud
computing, machine learning, and AI. Journal of Knowledge
Learning and Science Technology, 1(1).
https://doi.org/10.60087/jklst.vol1.n.p84.

[55] Revathi, K., Tamilselvi, T., Dhanwanth, B., & Dhivya, M.
(2023). Auto JSON: An automatic transformation model for
converting relational databases to non-relational documents.
International Journal of Advanced Computer Science and
Applications, 14(3).
https://doi.org/10.14569/IJACSA.2023.0140377.

[56] Wang, J., Lu, T., Li, L., & Huang, D. (2024). Enhancing
personalized search with AI: A hybrid approach integrating
deep learning and cloud computing. Journal of Advanced
Computing Systems, 4(10), 1–13.
https://doi.org/10.69987/JACS.2024.41001

[57] Balodi, K. C., Jain, R., Kiran Kumar, T. B., & Banerjee, D.
(2023). Platform revolution in the database management
system industry: Evolution of SAP’s business model [Teaching
case]. Journal of Information Technology Teaching Cases,
13(1), 126–133. https://doi.org/10.1177/20438869221106798

[58] Xia, Y. Q. (2024). Cloud-based control systems: Towards the
control architecture in cloud computing era. Science China
Information Sciences, 67(10), 206201:1–206201:3.
https://doi.org/10.1007/s11432-023-4156-5.

[59] Alyas, T., Alissa, K., Niazi, Q. A., & Tabassum, N. (2022).
Query optimization framework for graph database in cloud
dew environment. Computers, Materials & Continua.
https://doi.org/10.32604/cmc.2023.032454.

[60] Lu, Y., Bian, S., Chen, L., He, Y., Hui, Y., Lentz, M., Li, B., Liu,
F., Li, J., Liu, Q., … Zhuo, D. (2024). Computing in the era of
large generative models: From cloud-native to AI-native.

[61] Naeem, Z., Folorunso, E. O., Chu, T. S., Mamun, M. A. A., &
colleagues. (2024). Data-driven decision making: Advanced
database systems for business intelligence. Nanotechnology
Perceptions, 20(S3), 687–704. https://doi.org/10.62441/nano-
ntp.v20iS3.51

[62] Al-kateeb, Z. N. (2024). Unlocking the potential: Synergizing
IoT, cloud computing, and big data for a bright future. Iraqi
Journal for Computer Science and Mathematics, 5(3), 1–13.
https://doi.org/10.52866/ijcsm.2024.05.03.001

[63] Tawfik, O. I., & Elmaasrawy, H. E. (2023). Assessing the
factors that affected the development of cloud-based
accounting education and students’ academic performance in
Oman. Arab Gulf Journal of Scientific Research, 41(2), 141–
157. https://doi.org/10.1108/AGJSR-07-2022-0102

[64] Wang, H., Shi, S., Liu, H., & Ma, X. (2024). A cloud-based
solution and platform for remote sensing big data applications:
Challenges and opportunities.

International Journal of Innovation Scientific Research and Review, Vol. 07, Issue 05, pp.8432-8447 May 2025 8447

