
International Journal of Innovation Scientific Research and Review

Vol. 03, Issue, 02, pp.844-846, February, 2021

Available online at http://www.journalijisr.com

Research Article

ISSN: 2582-6131

LANGUAGE INDEPENDENT METAMODELS FOR MODELLING OF OBJECT ORIENTED SOFTWARE

1, *Ajit kumar and 2Dr. Navin Kumar.

1Research Scholar, Dept. of BCA, S.R.K.G. College Sitamarhi, B.R. Ambedkar Bihar University, Muzaffarpur, India.
2Faculty Member, Dept. of BCA, M.D.D.M College, B.R. Ambedkar Bihar University, Muzaffarpur, India.

Received 28th December 2020; Accepted 22th January 2021; Published online 15th February 2021

ABSTRACT

A language independent Meta Model supports the object oriented model on the basis of requirement. An environment for reengineering and reverse engineering
should be extensible in three aspects. First the repository should be able to represent and manipulate entities other than the one directly extracted from source
code. Second the reengineering environment should be able to operate with external tools like diagrammers, parser, and finally graphics drawing tools and to
support reengineering in the context of software evolution. The environment should be able to handle several source code models simultaneously. The old
system contains a large number of entities, so it should be scalable in terms of new system. The tools specific to the reengineering environment should support
the programming languages like C++, Ada, Java and Smalltalk. A re-engineering effort is typically a cooperation of a group of specialized tools. Therefore, a re-
engineering environment needs to be able to integrate with external tools, either by exchanging information or ideally by supporting runtime integration. An
additional requirement in this context is the actual performance of such an environment. It should be possible to handle a legacy system of any size without long
latency times.

Keywords: Language independent Meta Model, Reengineering, Repository, Integration.

INTRODUCTION

A language independent Meta Model supports the object oriented
model on the basis of requirement. The requirement of language
independent Meta-Meta Model is as follows
Extensibility: An environment for reengineering and reverse
engineering should be extensible in three aspects. First the repository
should be able to represent and manipulate entities other than the
one directly extracted from source code. Second the reengineering
environment should be able to operate with external tools like
diagrammers, parser, and finally graphics drawing tools and to
support reengineering in the context of software evolution. The
environment should be able to handle several source code models
simultaneously. Scalability: The old system contains a large number
of entities, so it should be scalable in terms of new system.
Support for multiple languages: The tools specific to the
reengineering environment should support the programming
languages like C++, Ada, Java and Smalltalk. Information
exchange: A reengineering effort is typically a cooperation of a group
of specialized tools [Serge Demeyer et al., 1999]. Therefore, a
reengineering environment needs to be able to integrate with external
tools, either by exchanging information or ideally by supporting
runtime integration. In addition to these general requirements, the
context of the FAMOOS project [Stéphane Ducasse and Serge
Demeyer, 1999], in which Moose was originally developed, imposed
the following requirement: Scalable: As legacy systems tend to be
huge, an environment should be scalable in terms of the number of
entities being represented. Furthermore, it should provide meaningful
information at any level of granularity. An additional requirement in
this context is the actual performance of such an environment. It
should be possible to handle a legacy system of any size without long
latency times. Support for multiple object-oriented languages:
This specific tool environment must support the reengineering of
software systems written in C++, Java, Ada and Smalltalk.

*Corresponding Author: Ajit kumar,
1Research Scholar, Dept. of BCA, S.R.K.G. College Sitamarhi, B.R. Ambedkar Bihar
University, Muzaffarpur, India

EXPERIMENTAL DETAILS

The FAMIX Meta-Meta Model models multiple object-oriented
languages. The design space as. FAMIX supports multiple languages
within one paradigm. It defines a language - independent core, which
allows tools to be reusable without adaptation over the supported
languages. How languages are mapped to the core and which
language specifics can be stored, is specified in language extensions.
Here i present the core part of FAMIX. The Meta-Meta Model
represents source code at the program entity level. First of all, this
level of information is sufficient for the analysis tasks I want to
support. The information allows one to perform structural analysis and
dependency analysis. It supports metrics computation and heuristics.
It does not support control flow analysis and the regeneration of
source code from the model. I store, however, the location of the
source code, allowing one to obtain additional information from the
source code itself. The second reason to choose the program entity
level is that more detailed information increases the size of models
considerably which hampers scalability. Thirdly, the program entity
level enables to abstract from language- specific details and as such
allows for a clean language-independent Meta-Meta Model. Figure1
shows the core entities and relations. All basic elements of object-
oriented languages are present (Class, Method, and Attribute).
Furthermore, FAMIX models support dependency information, such
as method invocations and access of the attribute and method
accesses. This information is important for dependency, impact
analysis and for instance.

 Figure1. Core entities and Relations

The complete Meta Model is not restricted to the above elements.
Additionally it also models different kinds of variables, functions and
arguments. I have given a short description of these elements. They
are modeled in an object-oriented hierarchy, which is shown in Figure
2 and figure 3.

 Function: a definition of behavior with global scope.
 Local Variable: it is a variable that is local to a method or

function.
 Global Variable: it is a variable with global scope.
 Implicit Variable: variables that are not explicitly defined such

as self, this and super.
 Formal Parameter: a parameter of a method or function.
 Access Argument: an argument of an invocation that

constitutes a simple variable access.
 Expression Argument: an argument of an invocation which is

an expression.
 Package: a scoping mechanism.
 Model: a Meta entity containing information about a model

such as creation time.

New model elements

An extension can define new model elements. Examples are the
Include relationship for the C++ extension [Stéphane Ducasse and
Serge Demeyer, 1999] and the Measurement element for the metrics
extension.

New attributes to existing model elements

Existing elements can be extending to allow one to store additional
information. An example is the is Final attribute that the Java
extension adds to the definition of the Method element. One of the
problems I have encountered is that not all standard Meta-Meta
Model support class extension. In the context of textual information
exchange I have worked with CDIF [CDIF, 1999] and XMI [OMG,
1997]. The CDIF Meta-Meta Model supports class extensions, the

XMI Meta-Meta Model, Functions and global variable are modeled
because they exist in several object-oriented languages I want to
cover such as C++ and Smalltalk. This effectively makes FAMIX
support hybrid object-oriented and procedural languages.

Object-Oriented
Hierarchy

 Function:
 Local Variable
 Global Variable.
 Implicit Variable
 Formal Parameter
 Access Argument
 Expression Argument
 Package.
 Model

Annotations

Any model element can be annotated by attaching a Property to it.
This is shown in figure 4 by the Object class, which can have zero or
more Properties attached to it.

Figure 4. Famix model elements and their Annotation

Multiple Language Support Provided by FAMIX

The FAMIX Meta Model supports multiple object-oriented languages.

Figure 3. Hierarchy of Famix model

International Journal of Innovation Scientific Research and Review, Vol. 03, Issue 02, pp.844-846, February, 2021 845

Here I have described the design decision that makes it easier to
support more than one specific language.

Concept of General Multiple Language Design

In FAMIX Meta Model we find relevant information for the support of
multiple languages.
Multiple Inheritances
FAMIX supports multiple inheritances. This allows us to deal with
single inheritance languages such as Smalltalk, but also with multiple
inheritance languages such as C++. Java also fits this scheme by
interpreting Java interfaces as abstract classes and interface
implementation as common inheritance.

Statically typed and dynamically typed languages

Static type information is important to store, because it reveals
important dependencies. If the information is not known, which is
normally the case with dynamically typed languages such as
Smalltalk, the information is left empty. For instance, Figure4 shows
that Method inherits the declared Type attribute. It is used to store the
statically declared return type for methods, like Point for the method
declaration Point get Point () {...} in Java. It is left empty for Smalltalk
methods. Another example of supporting both dynamic and static
typing is the candidate methods of an invocation.

Figure 5 shows the Invocation entity. The candidates attribute stores
the methods possibly invoked by this invocation. In Smalltalk, without
static type information, the candidates are all methods in a system
that have the signature as stored in the invokes attribute1. In Java the
static type information reduces the possibly invoked methods to a
single inheritance hierarchy or interface implementation hierarchy. By
storing the candidates independent of the way the information is
collected, tools can use the information independent if it concerns a
dynamically or statically typed language. Application: language
independent Meta Model supports various object oriented
programming like C ++, Java, Ada and Smalltalk. Static type
information is implemented in java programming language in case of
single inheritance. In Smalltalk, without static type information, the
candidates are all methods in a system that have the signature as
stored in the invokes attribute.

Conclusion

FAMIX supports multiple inheritances. This allows us to deal with
single inheritance languages such as Smalltalk, but also with multiple
inheritance languages such as C++. Java also fits this scheme by
interpreting Java interfaces as abstract classes and interface
implementation as common inheritance.

REFERENCES

1. [DD99] Stéphane Ducasse and Serge Demeyer, editors. The

FAMOOS Object-Oriented Reengineering Handbook. University
of Berne, October 1999.

2. [DDL99] Serge Demeyer, Stéphane Ducasse, and Michele Lanza.
A hybrid reverse engineering platform combining metrics and
program visualization. In Francoise Balmas, Mike Blaha, and
Spencer Rugaber, editors, Proceedings WCRE’99 (6th Working
Conference on Reverse Engineering). IEEE, October 1999.

3. [Neb99] Robb Nebbe. FAMIX Ada language plug-in 2.2.
Technical report, University of Berne, August 1999.

4. [Fre00] Michael Freidig. XMI for FAMIX. Informatikprojekt,
University of Berne, June 2000.

5. [TD99] Sander Tichelaar and Serge Demeyer. SNiFF+ talks to
Rational Rose– interoperability using a common exchange model.
In SNiFF+ User’s Conference, January 1999.

6. [Com94] CDIF Technical Committee. CDIF framework for
modeling and extensibility. Technical Report EIA/IS-107,
Electronic Industries Association, January 1994

7. [DDT99] Serge Demeyer, Stéphane Ducasse, and Sander
Tichelaar. Why unified is not universal. UML shortcomings for
coping with round-trip engineering. In Bernhard Rumpe, editor,
Proceedings UML’99 (The Second International Conference on
The Unified Modelling Language), LNCS 1723, Kaiserslautern,
Germany, October 1999. Springer-Verlag.

8. [Bar99] Holger Bar. FAMIXC++ language plug-in1.0. Technical
report, University of Berne, September 1999.

9. [OMG97] Object Management Group. Meta object facility (MOF)
specification. Technical Report ad/97-08-14, Object Management
Group, September 1997.
.

Invocation

InvokedBy(): Name
invokes(): Qualifier

base (): Name
receivingClass(): Name
candidatesAt (): Name

International Journal of Innovation Scientific Research and Review, Vol. 03, Issue 02, pp.844-846, February, 2021 846

